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first, as some of the questions are substantially more time consuming.  
 
Write all of your answers directly on this paper.  Make your answers as concise as possible. On 
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Problem 1: TRUE/FALSE [18 pts] 
In the following, it is important that you EXPLAIN your answer in TWO SENTENCES OR LESS 
(Answers longer than this may not get credit!).  Also, answers without an explanation GET NO 
CREDIT. 

Problem 1a[2pts]:  When you type Ctrl+C to quit a program in your terminal, you are actually 
sending a SIGINT signal to the program, which makes it quit. 

 True / False  
Explain: SIGINT is a vehicle for conveying a Ctrl-C requests from the terminal to 
the program.  Assuming that the SIGINT handler has not be redirected, this will cause the 
program to quit. Note: we would also take “False” if you explain that the SIGINT handler 
might have been redirected. 

Problem 1b[2pts]: The function pthread_intr_disable() is a crude but viable way for 
user programs to implement an atomic section. 

 True / False  
Explain: This function does not exist. However, you cannot disable interrupt at 

user level in any case.  A similarly-named routine (pthread_setintr()) simply 
disables the delivery of signals; it does not prevent multiple threads from executing 
concurrently—thus it could not be used to implement a critical section. 

Problem 1c[2pts]: If the banker's algorithm finds that it's safe to allocate a resource to an existing 
thread, then all threads will eventually complete. 

 True / False  
Explain: When the banker's algorithm finds that it's safe to allocate a resource, this 
simply means that threads could complete from a resource allocation standpoint. However, 
threads could still go into an infinite loop or otherwise fail to complete. 

Problem 1d[2pts]: The lottery scheduler can be utilized to implement strict priority scheduling. 

 True / False  
Explain: Strict priority scheduling would require the ability to have high-priority 
threads that receive all CPU time – at the expense of lower priority threads.  The lottery 
scheduler will give some CPU time to every thread (except those which have zero tokens). 

Problem 1e[2pts]: Locks can be implemented using semaphores. 

 True / False  
 Explain: Initializing a semaphore with the value “1” will cause it to behave like a 

lock.  Semi.P()  acquire() and Semi.V()  release(). 
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Problem 1f[2pts]: Two processes can share information by reading and writing from a shared 
linked list. 

 True / False  
Explain: If a shared page is mapped into the same place in the address space of 
two processes, then they can share data structures that utilize pointers as long as they are 
stored in the shared page and pointers are to structures in the shared page. 

 
Problem 1g[2pts]: In Pintos, a kernel-level stack can grow as large as it needs to be to perform its 
functions. 

 True / False  
Explain: Stacks in the Pintos kernel must fit entirely into a 4K page.  In fact, they 
share  the 4K page with the corresponding Thread Control Block (TCB). 

 
Problem 1h[2pts]: Suppose that a shell program wants to execute another program and wait on its 
result.  It does this by creating a thread, calling exec from within that thread, then waiting in the 
original thread.  

 True / False  
Explain: The shell program must create a new process (not thread!) before calling 
exec() otherwise, the exec() call will terminate the existing process and start a new process 
– effectively terminating the shell. 

 
Problem 1i[2pts]: A network server in Linux works by calling bind() on a socket, and then 
calling listen() on the socket in a loop to wait for new clients. 

 True / False  
Explain: The server calls listen() only once, then accept() multiple times in a loop. 
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Problem 2: Short Answer [18pts] 
Problem 2a[2pts]: How does a modern OS regain control of the CPU from a program stuck in an 
infinite loop?  
  

Assuming that we are talking about a user-level program (or a kernel thread with interrupts 
enabled), the timer interrupt handler (triggered by the timer) will enter the scheduler and 
recover the CPU from a program that is stuck in an infinite loop. 

 
 
 
 
Problem 2b[2pts]: Is it possible for an interrupt handler (code triggered by a hardware interrupt) to 
sleep while waiting for another event?  If so, explain how.  If not, explain why not.  
 

There are actually two possible answers to this question.  (1) “NO”: Strictly speaking, an 
interrupt handler must not sleep while waiting for another event, since it doesn’t have a 
thread-control block (context) to put onto a wait queue and is operating with interrupts 
disabled.  However, one could also answer (2) “YES”: an interrupt handler that wants to 
sleep must allocate a new kernel thread to finish its work, place the thread on a wait queue, 
then return from the interrupt (reenabling interrupts in the process). 

 
 
Problem 2c[2pts]: Why is it important for system calls to be vectored through the syscall table 
(indexed by an integer syscall number) rather than allowing the user to specify a function address to 
be called by the kernel after it transitions to kernel mode? 
 

If the user were able to specify an arbitrary address for execution in the kernel, then they 
could bypass checking and find many ways to violate protection.  Consequently, the user 
must specify a syscall number during the execution of a system call.  The hardware then 
atomically raises the hardware level to “kernel level” while executing the system call from 
the specified entry point. 

 
Problem 2d[3pts]: Name two advantages and one disadvantage of implementing a threading 
package at user level (e.g. “green threads”) rather than relying on thread scheduling from within the 
kernel. 
 

Advantages include: very fast context switch (all at user level, no system call), very low 
overhead thread fork, and user-configurable scheduling. One very important disadvantage 
is the fact that all threads will get put to sleep when any one thread enters into the kernel 
and blocks on I/O. 
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Problem 2e[2pts]: List two reasons why overuse of threads is bad (i.e. using too many threads for 
different tasks). Be explicit in your answers. 
 

There a number of possible answers (1) Too many threads scheduled simultaneously can 
lead to excessive context switch overhead. (2) Too many threads can lead to memory 
overutilization.  (3) Too many threads can cause excessive synchronization overhead (many 
locks to handle all the parallelism). 

 
 
Problem 2f[2pts]: What was the problem with the Therac-25? Your answer should involve one of 
the topics of the class. 
 

The Therac-25 had a number of synchronization problems, including improper 
synchronization between the operator console and the turntable mechanism which caused 
patients to receive the wrong type and dosage of radiation 

 
 
Problem 2g[2pts]: Why is it possible for a web browser (such as Firefox) to have 2 different tabs 
opened to the same website (at the same remote IP address and port) without mixing up content 
directed at each tab? 
 

Because a unique TCP/IP connection consists of a 5-tuple, namely [source IP, source Port, 
destination IP, destination Port, and protocol] (where the protocol is “6” for TCP/IP – 
which you didn’t need to know). Consequently, although the web browser might have many 
connections with the same source IP address, destination IP address and destination Port, 
they will all have unique source ports, allowing them to be unique. 

 
 
Problem 2h[3pts]: What are some of the hardware differences between kernel mode and user 
mode?  Name at least three. 
 

There are a number of differences: (1) There is at least one status bit (the “kernel mode 
bit”) which changes between kernel mode and user mode.  In an x86 processor, there are 2 
bits which change (since there a 4 modes). (2) Additional kernel-mode instructions are 
available (such as those that modify the page table registers, those that enable and disable 
interrupts, etc). (3) Pages marked as kernel-mode in their PTEs are only available in kernel 
mode. (4) Control for I/O devices (such as the timer, interrupt controllers, and device 
controllers) are typically only available from kernel mode. 
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Problem 3: Boy-Girl Lock [20pts] 
A boy-girl lock is a sort of generalized reader-writer lock: in a reader-writer lock there can be any 
number of readers or a single writer (but not both readers and writers at the same time), while in a 
boy-girl lock there can be any number of boys or any number of girls (but not both a boy and a girl 
at the same time).  Assume that we are going to implement this lock at user level utilizing pThread 
monitors (i.e pThread mutexes and condition variables). Note that the assumption here is that we 
will put threads to sleep when they attempt to acquire the lock as a Boy when it is already acquired 
by one or more Girls and vice-versa. You must implement the behavior using condition variable(s).  
Points will be deducted for any spin-waiting behavior. 
 
Some snippets from POSIX Thread manual pages showing function signatures are shown at end of 
this problem.  They may or may not be useful. 
 
Our first take at this lock is going to utilize the following structure and enumeration type: 
 
 /* The basic structure of a boy-girl lock */ 
 struct bglock { 
  pthread_mutex_t lock; 
  pthread_cond_t wait_var; 
   
  // Simple state variable 
  int state; 
 }; 
 
 /* Enumeration to indicate type of requested lock */ 
 enum bglock_type { 
  BGLOCK_BOY = 0; 
  BGLOCK_GIRL = 1; 
 }; 
 
 /* interface functions: return 0 on success, error code on failure */ 
 int bglock_init(struct bglock *lock); 
 int bglock_lock(struct bglock *lock, enum bglock_type type); 
 int bglock_unlock(struct bglock *lock); 
 
 
Note that the lock requestor specifies the type of lock that they want at the time that they make the 
request: 
 
 /* Request a Boy lock */ 
 if (bglock_lock(mylock, BGLOCK_BOY) { 
  printf(“Lock request failed!”); 
  exit(1); 
 } 
 /* . . . Code using lock . . . */ 
  
 /* Release your lock */ 
 bglock_unlock(mylock); 
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Problem 3a[3pts]: Complete the following sketch for the initialization function.  Note that 
initialization should return zero on success and a non-zero error code on failure (e.g. return the 
failure code, if you encounter one, from the various synchronization functions). Hint: the state of 
the lock is more than just “acquired” or “free”.   
 
 /* Initialize the BG lock. 
  * 
  * Args: pointer to a bglock 
  * Returns: 0 (success) 
  *   non-zero (errno code from synchronization functions) 
   */ 
 int bglock_init(struct bglock *lock) { 
  int result; 
 
  lock->state = 0; // No lock holders of any type 
   
  if (result = pthread_mutex_init(&(lock->mutex), NULL)) 
   return result;  // Error 
 
  result = pthread_cond_init(&(lock->wait_var), NULL); 
  return result; 
 } 

 
Problem 3b[5pts]: Complete the following sketch for the lock function.  Think carefully about the 
state of the lock; when you should wait, when you can grab the lock. 
 
 /* Grab a BG lock. 
  * 
  * Args: (pointer to a bglock, enum lock type) 
  * Returns: 0 (lock acquired) 
  *   non-zero (errno code from synchronization functions) 
   */ 
 int bglock_lock(struct bglock *lock, enum bglock_type type) { 
  int dir = (type == BGLOCK_BOY)?1:-1;  // Direction 
  int result; 
  
  // Grab monitor lock 
  if (result = pthread_mutex_lock(lock->lock)) 
   return result; // error 
 
  while (lock->state * dir < 0) { 
   // Incompatible threads already have bglock, must sleep 
   if (result = pthread_cond_wait(lock->wait_var, lock->lock)) 
    return result; // error 
  } 
  lock->state += dir;  // register new bglock holder of this type 
   
  // Release monitor lock 
  result = pthread_mutex_unlock(lock->lock); 
  return result; 
 } 
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Problem 3c[5pts]: Complete the following sketch for the unlock function.   
 
 /* Release a BG lock. 
  * 
  * Args: pointer to a bglock 
  * Returns: 0 (lock acquired) 
  *   non-zero (errno code from synchronization functions) 
   */ 
 int bglock_unlock(struct bglock *lock) {  
  int result; 
  
  // Grab monitor lock 
  if (result = pthread_mutex_lock(lock->lock)) 
   return result; // error 
 
  // one less bglock holder of this type 
  lock->state -= (type == BGLOCK_BOY)?1:-1;  // Direction   
 
  // If returning to neutral status, signal any waiters 
  if (lock->state == 0) 
   if (result = pthread_cond_signal(lock->wait_var)) 
    return result; // error 
   
  // Release monitor lock 
  result = pthread_mutex_unlock(lock->lock); 
  return result; 
 } 
 
Problem 3d[2pts]: Consider a group of “nearly” simultaneous arrivals (i.e. they arrive in a period 
much quicker than the time for any one thread that has successfully acquired the BGlock to get 
around to performing bglock_unlock()). Assume that they enter the 
bglock_lock()routine in this order: 
 

B1, B2, G1, G2, B3, G3, B4, B5, B6, B7 
 
How will they be grouped?  (Place braces, namely “{}” around requests that will hold the lock 
simultaneously).  This simple lock implementation (with a single state variable) is subject to 
starvation.  Explain. 
 

All of the boy requests will go first, followed by girl requests: 
 
{ B1, B2, B3, B4, B5, B6, B7 },  { G1, G2, G3 } 
 

This implementation experiences starvation because a series of waiting girl lock requests 
could be arbitrarily held off if there is a stream of boy requests (and vice-versa). 
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Problem 3e[5pts]: Suppose that we want to enforce fairness, such that Boy and Girl requests are 
divided into phases based on arrival time into the bglock_lock() routine.  Thus, for instance, 
an arrival stream of Boys and Girls such as this:  

B1, B2, G1, G2, G3, G4, B3, G5, B4, B5  

will get granted in groups such as this:  

{B1, B2}, {G1, G2, G3, G4}, {B3}, {G5}, {B4, B5} 
 
Explain what the minimum changes are that you would need to make to the bglock structure to 
meet these requirements and sketch out what you would do during bglock_init() and 
bglock_lock() and bglock_unlock() routines.  You do not need to write actual code, but 
should be explicit about what your bglock structure would look like and how you would use its 
fields to accomplish the desired behavior. 

Here, we number phases starting from zero (with wraparound). We expand our state 
variable to queue of state variables.  Each incoming thread figures out which phase they are 
in and then optionally sleeps (if they are not in the current phase).  Our new bglock looks 
like this:  
 

 struct bglock { 
  pthread_mutex_t lock; 

    pthread_cond_t wait_var; 
 
  int headphase, tailphase;  
   int state[MAX_PHASES+1]; 
 }; 

 
bglock_init(): initialize lock and wait_var; headphase=0; tailphase=0; state[x]=0 for all x; 
 
bglock_lock(): if state[tailphase] doesn’t match request, increment tailphase (with wrapping 
– may have to sleep if already have MAX_PHASES phases). In whatever case, increment 
state[tailphase] in correct direction (+1 or -1) depending on desired type of lock.  Save 
current tailphase as your phase. Then, wait on condition variable until headphase == 
current tailphase. 
 
bglock_unlock(): Decrement state[headphase] in correct direction (-1 or +1) depending on 
desired type of lock. If state[headphase]==0, check to see if headphase!=tailphase.  If so, 
headphase++, broadcast to wake up everyone on condition variable. 
 
Note that you can optimize wakeup behavior by adding a queue of condition variables as 
well, although this will increase the amount of state in the bglock. 
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Assorted POSIX Thread Manual Snippits for Problem 3 
 

PTHREAD_MUTEX_DESTROY(3P): initialization/destruction of mutexes 
       int pthread_mutex_destroy(pthread_mutex_t *mutex); 
 
       int pthread_mutex_init(pthread_mutex_t *restrict mutex, 
                 const pthread_mutexattr_t *restrict attr); 
 
       pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; 
 
 
PTHREAD_MUTEX_LOCK(3P): use of mutex 
       int pthread_mutex_lock(pthread_mutex_t *mutex); 
 
       int pthread_mutex_trylock(pthread_mutex_t *mutex); 
 
       int pthread_mutex_unlock(pthread_mutex_t *mutex); 
 
 
PTHREAD_COND_DESTROY(3P): initialization/destruction of condition variables 
       int pthread_cond_destroy(pthread_cond_t *cond); 
 
       int pthread_cond_init(pthread_cond_t *restrict cond, 
                     const pthread_condattr_t *restrict attr); 
 
       pthread_cond_t cond = PTHREAD_COND_INITIALIZER; 
 
 
PTHREAD_COND_TIMEDWAIT(3P): sleeping on condition variables 
       int pthread_cond_timedwait(pthread_cond_t *restrict cond, 
                     pthread_mutex_t *restrict mutex, 
                     const struct timespec *restrict abstime); 
 

int pthread_cond_wait(pthread_cond_t *restrict cond, 
                    pthread_mutex_t *restrict mutex); 
 

 
PTHREAD_COND_BROADCAST(3P): signaling of threads waiting on condition variables 
       int pthread_cond_broadcast(pthread_cond_t *cond); 
 
       int pthread_cond_signal(pthread_cond_t *cond); 
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 Problem 4: Scheduling and Deadlock [24 pts] 
 
Problem 4a[3pts]: What is priority inversion and why is it an important problem? Present a 
priority inversion scenario in which a lower priority process can prevent a higher-priority process 
from running (assume that there is no priority donation mechanism): 

Priority inversion is a situation in which a lower-priority task is allowed to run over a higher-
priority task. Consider three tasks in priority order: T1, T2, and T3 (i.e. T1 is lowest, T3 is 
highest).  Suppose that T1 grabs a lock, T2 starts running, then T3 tries to grab the lock (and 
sleeps).  Here, T2 is effectively preventing T3 from running (since T2 is preventing T1 from 
running, which is preventing T3 from running).  The result is priority inversion. 

Problem 4b[3pts]: How does the Linux CFS (“Completely Fair Scheduler”) scheduler decide 
which thread to run next?  What aspect of its behavior is “fair”?  (You can ignore the presence of 
priorities or “nice” values in your answer): 

The Linux CFS scheduler computes something called “virtual time” which is a scaled version of 
real CPU time.  The scheduler attempts to make sure that every thread has an equal amount of 
virtual time.  Thus, to decide which thread to run next, it simply picks the thread with the least 
amount of accumulated virtual time. This behavior is considered “fair” because it attempts to 
distribute the same total virtual time to every thread. 

 
  void main (void) { 
1     thread_set_priority(10); 
2     struct lock a, b, c; 
3     lock_init(&a);  
4     lock_init(&b); 
5     lock_init(&c); 
6     lock_acquire(&a); 
7     lock_acquire(&b); 
8     lock_acquire(&c); 
9     printf(“1”); 
10    thread_create(“a”,15,func,&a); 
11    printf(“6”); 
12    thread_create(“b”,20,func,&b); 
13    printf(“2”); 
14    thread_create(“c”,25,func,&c); 
15    lock_release(&c); 
16    lock_release(&a); 
17    lock_release(&b); 
18    printf(“!”); 
  } 

  void func(void* lock_) { 
19   struct lock *lock = lock_; 
 
20   lock_acquire(&lock); 
21   lock_release(&lock); 
 
22   printf(“%s”,thread_current()->name); 
 
23   thread_exit(); 
  } 
 

Problem 4c[2pts]: Consider the above PintOS test that exercises your priority scheduler.   Assume 
that no priority donation has been implemented.  What does it output to the terminal?   Is the output 
affected by priorities in any way?  Explain. 

This code will output “162cab!”. This result is not affected by priorities (as long as all threads 
running “func()” are higher priority than “main()”, since high-priority threads go to sleep 
almost immediately after they start and are released in order by lines #15, #16, and !37. 
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Problem 4d[5pts]: Next, assume that the code from (4c) is executed utilizing priority donation.  
Fill in the following table to detail execution.  This table includes 7 columns as following: 
 1) The current executing thread 
 2) Which line this thread was executing when it yielded 
 3) To which thread it yielded 
 4-7) The priorities of each thread (N/A if a thread is not created or has exited) 
 

thread_current() Line at which 
yielded 

Thread which it 
yielded to 

Main a b c 

main 10 a 10 15 N/A N/A

a 20 main 15 15 N/A N/A 

main 12 b 15 15 20 N/A 

b 20 main 20 15 20  

main 14 c 20 15 20 25 

c 20 main 25 15 20 25 

main 15 c 20 15 20 25 

c 23 main 20 15 20 N/A 

main 17 b 10 15 20 N/A 

b 23 a 10 15 N/A N/A 

a 23 main 10 N/A N/A N/A 

 
Problem 4e[2pts]:  What is printed according to the order of execution in (4d)?  Is the output 
affected by priorities in any way?  Explain. 
 

What is printed is: “162cba!”.  Yes, the output is affected by priorities in that thread “b” gets 
to acquire lock “b” before thread “a” acquires lock “a”. The ordering of letters happens in 
priority order. 
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Problem 4f[4pts]: 
Suppose that we have the following resources: A, B, C and threads T1, T2, T3, T4.  The total 
number of each resource is: 
 
 
 
 
Further, assume that the processes have the following maximum requirements and current 
allocations: 

Thread 
ID 

Current Allocation Maximum 
A B C A B C 

T1 2 1 3 4 9 4 
T2 1 2 3 5 3 3 
T3 5 4 3 6 4 3 
T4 2 1 2 4 8 2 

Is the system in a safe state? If “yes”, show a non-blocking sequence of thread executions. 
Otherwise, provide a proof that the system is unsafe. Show your work and justify each step of your 
answer. 
 

Answer: Yes, this system is in a safe state.   
 
To prove this, we first compute the currently free allocations: 

 
 

 
Further, we compute the number needed by each thread (Maximum – Current Allocation): 

 
Thread 

ID 
Needed Allocation 
A B C 

T1 2 8 1 
T2 4 1 0 
T3 1 0 0 
T4 2 7 0 

 
Thus, we can see that a possible sequence is: T3, T2, T4, T1: 
 

Thread 
ID  

Needed Allocation Current Allocation Available Before  
A B C A B C A B C 

T3 1 0 0 5 4 3 2 1 1 
T2 4 1 0 1 2 3 7 5 4 
T4 2 7 0 2 1 2 8 7 7 
T1 2 8 1 2 1 3 10 8 9 

 
 
 

Total 
A B C 
12 9 12 

Available 
A B C 
2 1 1 
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Problem 4g[3pts]: 
Assume that we start with a system in the state of (4f). Suppose that T1 asks for 2 more copies of 
resource A.  Can the system grant this if it wants to avoid deadlock? Explain. 
 

No.  This cannot be granted.  Assume that T1 gets 2 more of A.   
Then, our available allocation is:  
 
 
 
 
Then, looking at our needed allocations, we see: 

 
 
 
 
 
 
 
 
 

At this point, the available allocation is insufficient to start any of the threads, much less find a 
safe sequence that finishes all of them. 

 
Problem 4h[2pts]: Assume that a set of threads (T1, T2, … Tn) contend for a set of non-
preemptable resources (R1, R2, … Rm) that may or may not be unique. Name at least two techniques 
to prevent this system from deadlocking: 
 

We discussed several possible ways of preventing deadlock in class.  Possibilities include: 
1) Pick a fixed order of allocation (say R1 then R2 then  … Rm). All threads should allocate 

resources in this order. 
2) Every thread should indicate which resources they want at the beginning of execution. 

Then, the thread is not allowed to start until after the requested resources are all 
available. 

3) Use the Bankers algorithm on every allocation request to make sure that the system 
stays in a safe state. 

 
 
 

Available 
A B C 
0 1 1 

Thread 
ID 

Needed Allocation 
A B C 

T1 0 8 1 
T2 4 1 0 
T3 1 0 0 
T4 2 7 0 
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Problem 5: Address Translation [20 pts] 
Problem 5a[3pts]: In class, we discussed the “magic” address format for a multi-level page table 
on a 32-bit machine, namely one that divided the address as follows: 

Virtual Page # 
(10 bits) 

Virtual Page # 
(10 bits) 

Offset 
(12 bits) 

You can assume that Page Table Entries (PTEs) are 32-bits in size in the following format: 

Physical Page # 
(20 bits) 

OS 
Defined 
(3 bits) 

0 

L
arge 

P
age

D
irty 

A
ccessed 

N
ocache 

W
rite 

T
hrough

U
ser 

W
riteable 

V
alid 

What is particularly “magic” about this configuration?  Make sure that your answer involves the 
size of the page table and explains why this configuration is helpful for an operating system 
attempting to deal with limited physical memory. 

Each page is 4K in size (12-bit offset  212 bytes). Because the PTE is 4-bytes long and each 
level of the page table has 1024 entries (i.e. 10-bit virtual page #), this means that each level of 
the page table is 4K in size, i.e. exactly the same size as a page.  Thus the configuration is 
“magic” because every level of the page table takes exactly one page.  This is helpful for an 
operating system because it allows the OS to page out parts of the page table to disk. 

Problem 5b[2pts]: Modern processors nominally address 64-bits of address space both virtually 
and physically (in reality they provide access to less, but ignore that for now).  Explain why the 
page table entries (PTEs) given in (5a) would have to be expanded from 4 bytes and justify how big 
they would it need to be.  Assume that pages are the same size and that the new PTE has similar 
control bits to the version given in (5a). 

Since we are attempting to address 64-bits of physical DRAM and the page offset is 12-bits, this 
leaves 52-bits of physical page # that will have to fit into the PTE.  The old PTE had only 20-
bits of space for  physical page #.  In fact, we need another 32-bits of offsetPTE needs 52-bits 
of offset+12-bits of control bits (to be the same), yielding 64-bits of PTE, or 8-bytes. 

Problem 5c[2pts]: Assuming that we reserve 8-bytes for each PTE in the page table (whether or 
not they need all 8 bytes), how would the virtual address be divided for a 64-bit address space? 
Make sure that your resulting scheme has a similar “magic” property as in (5a) and that all levels of 
the page table are the same size—with the exception of the top-level. How many levels of page 
table would this imply?  Explain your answer! 

To have the same “magic” property, we would like each level of the page table to be the same 
size as a page – so that the OS could page out individual parts of the page table.  Since a PTE is 
8-bytes (3-bits in size), this means we need 12-3 = 9-bits of virtual page # at each level.  This 
means that the virtual address needs to be divided into groupings of 9-bits (although the top 
level be smaller, since we only have 64-bits): 
 
 [7-bits][9-bits][9-bits][9-bits][9-bits][9-bits][12-bits offset] 
 
Thus, there are 6 levels of page table.  
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Problem 5d[3pts]: Consider a multi-level memory management scheme using the following format 
for virtual addresses, including 2 bits worth of segment ID and an 8-bit virtual page number:  

Virtual seg # 
(2 bits) 

Virtual Page # 
(8 bits) 

Offset 
(8 bits) 

Virtual addresses are translated into 16-bit physical addresses of the following form: 

Physical Page # 
(8 bits) 

Offset 
(8 bits) 

Page table entries (PTE) are 16 bits in the following format, stored in big-endian form in memory 
(i.e. the MSB is first byte in memory): 

Physical Page # 
(8 bits) 

K
ernel 

N
ocache 

0 0 

D
irty 

U
se 

W
riteable 

V
alid 

2) How big is a page? Explain. 
 

A page is 28=256 bytes. 
 
2) What is the maximum amount of physical memory supported by this scheme? Explain 
 

Physical addresses have 16-bits  216=65536 bytes (i.e. 64K bytes) 
 
Problem 5e[10pts]: Using the scheme from (5d) and the Segment Table and Physical Memory 
table on the next page, state what will happen with the following loads and stores. Addresses below 
are virtual, while base addresses in the segment table are physical. If you can translate the address, 
make sure to place it in the “Physical Address” column; otherwise state “N/A”. 

The return value for a load is an 8-bit data value or an error, while the return value for a store is 
either “ok” or an error. If there is an error, say which error. Possibilities are: “bad segment” 
(invalid segment), “segment overflow” (address outside segment), or “access violation” (page 
invalid/attempt to write a read only page).  A few answers are given: 

Instruction 
Translated 

Physical Address 
Result (return value) 

Load [0x30115] 0x3115 0x57 

Store [0x10345] 0x3145 Access violation 

Store [0x30316] 0xF016 ok 

Load [0x01202] 0xF002 0x22 

Store [0x31231] 0xE031 Access violation 

Store [0x21202] N/A Bad segment 

Load [0x11213] N/A Segment overflow 

Load [0x01515] 0x3015 or N/A Access violation 
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 Segment Table (Segment limit = 3) 
 

Seg # 
Page Table 

Base 
Max Pages 
in Segment 

Segment 
State 

0 0x2030 0x20 Valid 
1 0x1020 0x10 Valid 
2 0xF040 0x40 Invalid 
3 0x4000 0x20 Valid 

 
 

Physical Memory 
Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
0x0000 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
0x0010 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D

….                 
0x1010 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
0x1020 40 03 41 01 30 01 31 01 00 03 00 00 00 00 00 00
0x1030 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF
0x1040 10 01 11 03 31 03 13 00 14 01 15 03 16 01 17 00

….                 
0x2030 10 01 11 00 12 03 67 03 11 03 00 00 00 00 00 00
0x2040 02 20 03 30 04 40 05 50 01 60 03 70 08 80 09 90
0x2050 10 00 31 01 F0 03 F0 01 12 03 30 00 10 00 10 01

….                 
0x3100 01 12 23 34 45 56 67 78 89 9A AB BC CD DE EF 00
0x3110 02 13 24 35 46 57 68 79 8A 9B AC BD CE DF F0 01
0x3120 03 01 25 36 47 58 69 7A 8B 9C AD BE CF E0 F1 02
0x3130 04 15 26 37 48 59 70 7B 8C 9D AE BF D0 E1 F2 03

….                 
0x4000 30 00 31 01 11 01 F0 03 34 01 35 00 43 38 32 79
0x4010 50 28 84 19 71 69 39 93 75 10 58 20 97 49 44 59
0x4020 23 03 20 03 E0 01 E1 08 E2 86 28 03 48 25 34 21

….                 
0xE000 AA 55 AA 55 AA 55 AA 55 AA 55 AA 55 AA 55 AA 55
0xE010 A5 5A A5 5A A5 5A A5 5A A5 5A A5 5A A5 5A A5 5A

….                 
0xF000 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF
0xF010 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF 00
0xF020 22 33 44 55 66 77 88 99 AA BB CC DD EE FF 00 11

….                 
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