U.C. Berkeley — CS170 : Algorithms First Midterm Solutions
Lecturers: Sanjam Garg and Prasad Raghavendra Oct 7, 2015

First Midterm Solutions

Name:

SID:

GSI and section time:

Answer all questions. Read them carefully first. Be precise and concise. The number of points indicate
the amount of time (in minutes) each problem is worth spending. Not all parts of a problem are weighted
equally. Write in the space provided, and use the back of the page for scratch. Box numerical final answers.
Good luck!

When an explanation is required, answer with one or two short
sentences. (20 points)

1. For the directed graph below, find the strongly connected components and draw the DAG of strongly
connected components.

O

N
A \\B
s\
© D)
i\
F &)

®» @

The strongly connected components are {A}, {B, D, E, H},{C, F},{G},{J}, and the DAG is in the

above right graph.

Common Mistakes:

e Many students forgot the edge between {B, D, E, H} and {C, F'}.
e While nothing is wrong with drawing the graph linearized, this was not necessary, and made it

harder to read and grade :(

e The DAG of the SCCs is not a multi-edge graph. For example, there should not be two edges

between {B, D, E, H} and {G}.

e A strongly connected component may be a single vertex, yes.

2. Execute DFS on the following undirected graph starting at node D breaking ties alphabetically. Mark

the pre and post values of the nodes.

(B)

@

&

®

Node | pre post
A 3 16
B 2 17
C 4 15
D 1 18
E 8 9
F 5 14
G 6 13
H 7 12
J 10 11

When an explanation is required, answer with one or two short
sentences. (20 points)

1. For the directed graph below, find the strongly connected components and draw the DAG of strongly
connected components.

©) OO

2. Execute DFS on the following undirected graph starting at node D breaking ties alphabetically. Mark
the pre and post values of the nodes.

Node | pre post
A 3 16
(=)
® L/ ® - -
C 4 15
) () (<
(¢ & O, D |1 I8
E 8 9
F F 5 14
G 7 10
H 6 13
© O,
J 11 12

3. In an implementation of Bellman-Ford, starting with the initialization dist(A) = 0, dist(B) = dist(C) =
dist(D) = dist(E) = dist(F) = oo, the following sequence of updates are applied on the graph shown
below.

1) update(A — C) 11) update(C — D)
2) update(B — D) 12) update(A — C)
@—>® 3) update(A — B) 13) update(A — B)
4) update(C — D) 14) update(C — E)
5) update(F — E) 15) update(D — F)
6) update(C — E) 16) update(B — D)
(CHD> 7) update(D — F) 17) update(A — B)
8) update(B — D) 18) update(C — D)
9) update(D — F) 19) update(F — E)
@<—® 10) update(F — E) 20) update(C — E)

What is the earliest step at which the distance to F' guaranteed to be correct, for all possible weights
on the edges? Justify your answer.

Solution: ACDF and ABDF are the only two paths from A to F, and both of them appear as
subsequences of the updates by step 9. Hence, the distance to F' is guaranteed to be correct by step 9.

More specifically, the distance to C is guaranteed by step 1, the distance to B is guaranteed by step 3,
the distance to D is guaranteed by step max (4,8) = 8, and the distance to F' is guaranteed by step 9.

4. Describe the naive algorithm for Fourier transform. What is its running time?
(Briefly and precisely describe the algorithm, no need to prove the correctness)

Input: ag,...,a,—1 €R

Output: the Fourier transform by,...,b,—1 using w the nth

root of unity

Fourier transform involves evaluating the polynomial p(z) = ag+a;-x+asg 224 Fan,_1-2™ ! at the n-
th roots of unity, 1,w,w?, ..., w"! and giving as output, by = p(1),b1 = p(w), b2 = p(w?),...,bp_1 =
p(w™).

In this class we devised the fast Fourier transform algorithm in order to do these computations effi-
ciently, but the question was asking for the naive way of doing these computations. The naive Fourier
transform naively evaluates p(x) at the n-th roots of unity. Based on how naively we calculate w'’
for i,5 € {0,1,2,...,n — 1}, this computation can take from O(n?) up to O(n*) time. All correctly
explained answers in this range were given full credit.

Note that we can give a compact representation of the evaluation of the polynomial at the n-th roots
of unity, using linear algebra notation, i.e.

b() 1 1 1 e 1 ap

b1 1 w w? w1 ai

b2 _ 1 w2 (w2)2 (wQ)'n—l a9
bnfl 1 wnfl (wn71)2 . (wnfl)nfl Gp_1

Using this representation the naive Fourier tranform involves constructing the n x n matrix which can
take from O(n?) up to O(n?) time (based on how naive the construction is), and then multiplying
the matrix with the vector which takes O(n?) time. Correct solutions interpreting the matrix-vector
multiplication as a matrix-matrix multiplication and so deriving that O(n?) time is needed for this
operation was given full credit as well.

Find the bug (10 points)

5. Are these algorithms and/or their proofs correct? Justify your answers (If the algorithm is correct,
justify why and if the algorithm is incorrect, either give a counterexample or justify why).

(a) Divide and Conquer Algorithm for MST MST(G: graph on n vertices)
Ty < MST(G;: subgraph of G induced on vertices {1,...,n/2})

Ty <~ MST(G3: subgraph of G induced on vertices {n/2+1,...,n})
e < cheapest edge across the cut {1,...,5} and {§ +1,...,n}.
return 73 UTy U{e}.

Proof of correctness By the cut property, the cheapest edge e across the cut {1,...,%5} and
{5 +1,...,n} belongs to an MST T. On removing the edge e from T, the resulting subtrees must
be the minimum spanning trees connecting {1,..., 5} and {5 +1,...,n}.

Solution:

This algorithm does not work; multiple edges of the MST could cross this particular cut. Another
way to see this is that the MSTs of the subgraph needn’t also be part of the MST of the whole
graph.

As a concrete counterexample, consider a wide rectangle and the horizontal cut between the top
two vertices and the bottom two. Both edges on this cut should be in the MST.

(b) Greedy DFS for shortest paths
Input: Graph G = (V,E),a starting vertex s and non-negative lengths /. for each
edge ec .
Goal: Compute shortest path to a vertex v

Run DFS, but at each node explore the shortest outgoing edge first until v is reached.
Return the s to v path in the DFS tree.

Solution:

As a counterexample, consider the above graph. The greedy DFS will output the path s — ¢ — v
rather than the shortest path, s — v. This illustrates the intuition for why this algorithm fails:
the shortest path between two vertices need not make use of the shortest individual edges.

True or false? Circle the right answer. No explanation needed
(15 points)

The solution of the recurrence T'(n) = 3T(n/3) + O(n?) is T(n) = O(n3).

Solution: T; this is a straightforward application of the master theorem.

By starting with number 3 and repeatedly squaring it 1000 times, we can compute 32"

within a day on a laptop.

Solution: F; the final number will be around 2'9%° digits long, and thus dwarf the
world’s available storage space.

Given a polynomial of degree 2™ — 1, the FFT works by recursively computing 2" points
of two polynomials of degree 2"~! — 1 and then combining the results.

Solution: F; the power of the FFT lies in that it only needs 2"~! points of each of the
lower-degree polynomials to compute 2™ points of the bigger polynomial.

In a graph, if one raises the lengths of all edges to the power 3, the minimum spanning
tree will stay the same.

Solution: T; the MST algorithms care about relative edge lengths, and raising all edge
lengths the 3rd power preserves this relationship.

FFT(1,2,3,4) + FFT(-1,-2,-3,—4) = [0,0,0,0]

Solution: T; FFT is linear.

If "' =1 (mod n) for some positive integers a < n, then n is a prime.

Solution: F; a =1 is the obvious counter-example.

The randomized algorithm to find the median is always faster than running mergesort
to find the median.

Solution: F; the median-finding algorithm has worst-case running time O(n?).

The first edge added by Kruskal’s algorithm can be the last edge added by Prim’s algo-
rithm.

Solution: T; the graph d(A, B) =1, d(B,C) = 2, and we start running Prim’s at C.

10)

11)

12)

13)

14)

15)

log™(2™) = 2log™ n

Solution: F; By definition, log"(2™) = 1 + log*(log 2™) = 1 + log* n.

The family consisting of all possible functions f : {1,...,216} — {1,...,256} is a uni-
versal hash family.

Solution: T; Consider distinct z, y in the domain, and let f(z) = q. Exactly 1/256 of
all possible such functions f will satisfy f(y) = ¢, because for any mapping of the other
216 _ 2 elements in the domain, exactly one of the 256 functions will map y to gq.

If H:7Z — {1,...,170} is a universal hash family of functions, then for every pair of
distinct keys x, y there is some function f € #H such that f(z) # f(y).

Solution: T; we have P(f(z) = f(y)) = 135, so there must be such an f.

If all edge weights in a graph are either 1 or 2, then the shortest path can be computed
in O(|V| + |E|) time.

Solution: T; split edges of length 2 in two by adding a dummy vertex, and run BFS.
The heaviest edge in a graph cannot belong to the minimum spanning tree.

Solution: F; this edge may be connecting two otherwise-disconnected subgraphs.

The maximum spanning tree (spanning tree of maximum cost) can be computed by

negating the cost of all the edges in the graph and then computing minimum spanning
tree.

Solution: T; this works, and none of the proofs of our MST algorithms depended on
edge weights being nonnegative.

The longest path in a graph can be computed by negating the cost of all the edges in
the graph and then running Bellman-Ford.

Solution: F; this may introduce negative cycles.

Semi-Connected Graphs (15 points)

6. A directed graph G = (V, E) is semi-connected if for every pair of vertices u, v either there is a path
from u to v or there is a path from v to u or both.

(a)

Give an example of a DAG that is not semi-connected.

Solution: A disconnected DAG:

OO

State a necessary and sufficient condition for a DAG to be semi-connected.

Solution: There is a single path that goes through all vertices (i.e. there is a Hamiltonian path);
this is equivalent to saying that when linearized, there is an edge between every consecutive pair
of vertices. A third equivalent statement is that there is exactly one linearization of the DAG;
however, this formulation is harder to base a correct algorithm for in part (c) with.

We now prove that the first formulation is a necessary and sufficient condition for semi-connectedness.
(The corresponding proofs for the other formulations are similar, and will be left as an exercise
to the reader.)

When there are k vertices, let the linearized order be vy, v, ..., vk.

We first show that this is a necessary condition. For any i: there cannot be a path from v;4q
to v;, and the only possible path from v; to v;41 is a direct edge between then, so this edge
must be present in order for the graph to be semi-connected. Since there are edges between all
consecutive pairs of vertices in the linearized order, there is a path through all vertices. Thus,
this is a necessary condition.

We now show that this is a sufficient condition. If there is a path that goes through all vertices,
there is a path between any pair of vertices v;, v; by simply following the relevant part of this
global path.

Common Mistakes:

e Some students interpreted the problem incorrectly, and confused ”path” with ”edge”.

e Some students may have confused ”semi-connected” and ”weakly-connected” graphs.

e Many students said that the condition was that the DAG had exactly one single source or
exactly one sink. While this is a necessary condition, it is not a sufficient one: imagine a
graph with the edges A — B, A — C, B — D, C — D. There is neither a path from B to C
nor from C to B.

e Some students, either in this part or in part (c¢), suggested that each explore call was equivalent
to finding a single weakly connected component. This is not necessarily the case, as can be
seen in the following graph: A — B, where we start DFS from B first, and would then have
to make a separate explore call from A.

(c¢) Given a DAG, exhibit an algorithm to check if it is semi-connected. (Formal pseudocode is un-
necessary, briefly but precisely describe the algorithm and argue its correctness)

Solution 1:

As per part (b), we linearize the graph and check if there is a pair of vertices between every pair
of consecutive vertices. The proof of why this works is already explained in part (b).

Solution 2:

There is a path that goes through all vertices in a DAG iff the longest path in the DAG is of
length |V| — 1. This condition could be checked via linearization and then iterating through the
vertices in order, to find the longest path. The proof of correctness of this algorithm is also in
part (b).

Solution 3:

An alternate solution is to check if there is exactly one source in the graph; if there is not, then
the graph is not semi-connected, and if there is, then the algorithm deletes the vertex and recurses
on the remaining vertices.

If a graph has more than one source, then as neither source can have a path to each other, the
graph cannot be semi-connected. If a DAG has exactly one source, that source must be an an-
cestor of and thus be able to reach every other vertex. In this latter case, we thus only need to
check if the subgraph excluding the source vertex is semi-connected.

Common Mistakes:

e First, the proof of correctness sought required relating the algorithm, and likely the condition
proposed in part (b), to the definition of semi-connectedness. Relating the algorithm to just
the condition in part (b) was insufficient (unless the correctness of that condition was proven.)

e In addition, for correctness, it was important to argue both that your algorithm rejects non-
semi-connected graphs as well as finds the semi-connected graphs, i.e. proving that the
algorithm is correct for both types of graphs. Some students only proved one (i.e. algorithm
returns true implies graph is semi-connected, or graph is semi-connected implies algorithm
returns true, but not both).

e Some students tried to find all possible linearizations of the graph, or count the number of
such linearizations. We have not discussed any algorithm to do so, and this is potentially a
very ineflicient process: the DAG with n vertices and 0 edges has n! linearizations. Similarly,
multiple calls to DFS may find the same linearization, even if started on a different vertex,
so using DF'S is not a reliable way of determining if there is only one linearization.

e Some students checked that there was exactly one source and one sink, and then ran DFS
from the source to see if every vertex was reached on the way to the sink, in an attempt to
follow solution 2. However, DFS does not guarantee that we explore the vertices in linearized
order: imagine the graph with edges A — B, B — C, A — C}; in this graph, if we take the
path from A to C first, we did not explore the other vertices. Rather, this is why the idea of
linearization is so useful for DAGs, instead of using DF'S.

e Some students wrote proofs that did not match their algorithm (e.g. abstracted a level away
and proved the intent of their algorithm). These did not prove the algorithm, regardless of
whether or not the algorithm was a successful implementation of the main idea.

e Naive algorithms received, as usual, no credit. In this case, naive would be O(n?), doing
something like run DFS from every vertex.

e Finally, a reminder that in a DAG, every vertex is its own strongly connected component.
Generally, the notion of a SCC is unlikely to be relevant for DAGs, even if mentioning SCCs
wasn’t wrong, per se.

Shortest Path with Time-Dependent Edges (20 points)

7. Mr. Albert is on a vacation in Switzerland. There are n cities in Switzerland and m trains T4, ..., T,
between cities. Each train T; departs city origin[i] at time dep[i] and arrives in city destinationli] at
time arr[i]. Different trains between the same pair of cities could have different journey times.

Albert can switch trains at a station instantaneously, i.e., Albert can arrive at time ¢, switch trains
and depart on a train leaving at time t.

Albert starts his journey at time 0. The arrival and departure times arr[] & dep[] are specified in the
units — “hours from the time Albert started his journey”.

(a) Modify Djikstra’s algorithm to compute the duration of the quickest route to city B starting in
city A at time 0. (proof of correctness and running time bound not required)

for all cities v, dist[v] = oo
dist[A] =0
H < makeQueue(); // priority queue containing cities with dist values
while H is nonempty
v < deleteMin(H)
for every train 7T; from city v do
(write your pseudocode here)

Solution:
if dist[v] < depli] :
if arr(i] < dist[destination][i]] :
dist[destination[i]] < arr[i]
H.decreaseKey(destination|i], arr(i])
return dist|B]

Explanation:

The values in dist will tell us the earliest time at which it is possible for Albert to reach each city.
As such, the first if statement ensures that we only consider trains which it is possible for Albert
to catch. Each train acts as an edge in a graph where cities are vertices. Rather than explicitly
computing edge weights and factoring in both travel and weight time, we update dist values with
the arrival times of trains. Since we are running Dijkstra’s algorithm, we must update the priority
queue so that we consider cities ordered by the earliest time that they could be reached.

10

(b) Albert does not mind the train journeys, but really hates waiting at the stations. Albert would
like to find an itinerary that reaches B within 3 days, but minimizes the total wait time at the
train stations. Design an algorithm to find such a path.

(Hint: Model the problem using a different graph whose nodes specify more than just the city
where Albert is. Running Djikstra’s algorithm in this graph would give the desired path.)

(Briefly but precisely describe the graph, and argue the correctness of the algorithm.)

Solution

Very few responses received any credit. To show how to approach the problem, we develop several,
increasingly refined solutions.

Naive Layering

First, remove all trains whose arrival times are later than 3 days from Albert’s start time. This

settles the issue of paths that take too long overall.

We now apply the strategy of creating many copies or “layers” of the original input.

S = (U dep[i]) U (U arr[i])

of times at which any train departs or arrives anywhere.

i. Create the ordered set

ii. For each time si in .S, create a copy Vj of the original set of cities V.

iii. For each train T;, add an edge from city origin[i] in layer dep|i] to city destination[i] in layer
arr[i]. Give these edges zero weight, to signify that Albert doesn’t mind time spent traveling.

iv. For each city vy in layer Vi, add an edge to its copy vi41 in the layer Vi1 immediately
“above” it; that is, the chronologically next time in S. Give this edge weight s; 1 — si. This
penalizes waiting at city vy from time s to Sg11.

v. Run Dijkstra’s algorithm on the constructed graph and recover the shortest A-B path.

This is a correct algorithm because the total length of the recovered path will be the total time
spent waiting in cities. The zero-length train edges ensure that the cities in this graph are con-
nected the same way as in the original input, and that time spent traveling is cost-free. Also,
we eliminated all trains that would enable longer-than-3-day travel, without destroying any other
paths.

Since there are up to 2m unique times in S, we create O(mn) nodes. We also create O(mn)
“waiting” edges and m train edges, for O(mn) edges overall. Thus Dijkstra’s algorithm costs
O(mnlog(mn)) time.

Optimized Layering

Observe that the naive layering solution created numerous useless city nodes. Simply eliminating
those city-times v that do not interact with any trains at time Sy brings the number of nodes
down to O(m + n) (do you see why?). The number of edges is O(m). Thus Dijkstra will run in
time O((m + n)log(m + n)).

A Direct Approach
When we notice that the (zero-cost) train edges can be turned into nodes that connect directly
via waiting edges, we arrive at the following solution (which can also be reached independently):

i. For each train T;, create a node (which for simplicity we also call T;.)

11

ii. For each city v, create edges (T3, Tj) between each inbound train 7; and each outbound train
T; whose departure time from v 1is later than the arrival time of T; at v. Set the weight of
each such edge to the time Albert would wait between taking those trains: dep[j] — arr[i].

iii. Create nodes for cities A and B, zero-weight edges (A, T;) for all trains T; that depart from
A, and zero-weight edges (T}, B) for all trains T; that arrive at B.

iv. Run Dijkstra on this graph from A.
The shortest A-B path returned is clearly the sequence of train rides that minimizes total wait
time (ignoring nodes A and B in the path). Unfortunately, the constructed graph may have up

to ©(m?) or O(n*) edges, making it slower than the naive layering approach for many inputs.
However, this method is also very natural and easy to visualize.

12

