
EECS 16A Designing Information Devices and Systems I
Fall 2015 Anant Sahai, Ali Niknejad Midterm 1

Exam location: 10 Evans, Last name starting with A-B or R-T

PRINT your student ID:

PRINT AND SIGN your name: ,
(last) (first) (signature)

PRINT your Unix account login: ee16a-

PRINT your discussion section and GSI (the one you attend):

Name of the person to your left:

Name of the person to your right:

Name of the person in front of you:

Name of the person behind you:

Section 0: Pre-exam questions (3 points)

1. What other courses are you taking this term? (1 pt)

2. What activity do you really enjoy? Describe how it makes you feel. (2 pts)

Do not turn this page until the proctor tells you to do so. You can work on Section 0 above before time starts.
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PRINT your name and student ID:

[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem’s main
page.]

EECS 16A, Fall 2015, Midterm 1 2



PRINT your name and student ID:

Section 1: Straightforward questions (24 points)
Unless told otherwise, you must show work to get credit. There will be very little partial credit given in this
section. You get one drop: do 3 out of the following 4 questions. (We will grade all 4 and keep the best
3 scores.) Each problem is worth 8 points. Students who get all 4 questions correct will receive some bonus
points (6 points).

3. Solve It

Solve the following system of linear equations[
1 3
−2 −5

][
x1
x2

]
=

[
4
−6

]
Solutions: 1 3

... 4

−2 −5
... −6

 =⇒︸︷︷︸
R2←R2+2·R1

1 3
... 4

0 1
... 2

 =⇒︸︷︷︸
R1←R1−3·R2

1 0
... −2

0 1
... 2

 (1)

which yields the solution[
x1
x2

]
=

[
−2
2

]
(2)

4. Invert It

What is the inverse of the matrix
[

1 3
−2 −5

]
?

Solutions: We can find the inverse by row reducing the augmented system1 0
... 1 3

0 1
... −2 −5

 (3)

1 0
... 1 3

0 1
... −2 −5

 =⇒︸︷︷︸
R2←R2+2·R1

1 0
... 1 3

2 1
... 0 1

 =⇒︸︷︷︸
R1←R1−3·R2

−5 −3
... 1 0

2 1
... 0 1

 (4)

Thus the inverse is given by[
−5 −3
2 1

]
(5)

We can check our answer by calculating[
1 3
−2 −5

][
−5 −3
2 1

]
=

[
1 0
0 1

]
(6)
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You could also have used the equation for the inverse of a 2×2 matrix if you know it[
a b
c d

]−1

=
1

ad−bc

[
d −b
−c a

]
(7)

[
1 3
−2 −5

]−1

=
1
1

[
−5 −3
2 1

]
(8)
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PRINT your name and student ID:

5. Show It
Let n be a positive integer. Let {~v1,~v2, . . . ,~vk} be a set of k linearly dependent vectors in Rn. Show that for
any (n×n) matrix A, the set {A~v1,A~v2, . . . ,A~vk} is a set of linearly dependent vectors.

Solutions: It is given that {~v1,~v2, . . . ,~vk|~vi ∈ Rn} are linearly dependent. This implies that there exist k
scalars, {α1,α2, . . . ,αk} from R that are not all equal to zero simultaneously (or equivalently at least one of
them is not equal to zero), such that

α1 ·~v1 +α2 ·~v2 + · · ·+αk ·~vk =~0 (9)

By multiplying Equation 9 by A from the left side, we get

A · (α1 ·~v1 +α2 ·~v2 + · · ·+αk ·~vk) = A ·~0 (10)

First, note that A ·~0 =~0. Moreover, if we distribute we get

A · (α1 ·~v1)+A · (α2 ·~v2)+ · · ·+A · (αk ·~vk) =~0 (11)

From associativity of multiplication we get

(A ·α1) ·~v1 +(A ·α2) ·~v2 + · · ·+(A ·αk) ·~vk =~0 (12)

Since scalar-matrix multiplication is commutative, we get

(α1 ·A) ·~v1 +(α2 ·A) ·~v2 + · · ·+(αk ·A) ·~vk =~0 (13)

By using associativity of multiplication again, we get

α1 · (A ·~v1)+α2 · (A ·~v2)+ · · ·+αk · (A ·~vk) =~0 (14)

Therefore, the same k scalars, {α1,α2, . . . ,αk} show the linear dependence of the vectors {A~v1,A~v2, . . . ,A~vk}
as requested.

�

Note: There are alternative and equivalent implications of linear dependence that can be used in the proof
(in place of Equation 9). Here are a few of them:

(a) The vector ~vk can be represented as a linear combination of the other vectors as follows: There exist
scalars α1,α2, . . . ,αk−1 such that

α1 ·~v1 +α2 ·~v2 + · · ·+αk−1 ·~vk−1 = ~vk (15)

(in this alternative, the scalars may all be zeros, and the linear combination in the left hand side must
exclude~vk)

(b) Some vector ~v j can be represented as a linear combination of the other vectors as follows: There exist
scalars αi,1≤ i≤ k, i 6= j such that

k

∑
i=1
i 6= j

αi ·~vi = ~v j (16)

(in this alternative, the scalars may all be zeros, and the linear combination in the left hand side must
exclude~v j)
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(c) There exists 1≤ j ≤ k such that ~v j can be represented as a linear combination of the ~v1,~v2, . . . ,~v j−1 as
follows: There exist scalars α1,α2, . . . ,α j−1 such that

j−1

∑
i=1

αi ·~vi = ~v j (17)

(in this alternative, the scalars may all be zeros, and the linear combination in the left hand side must
exclude~v j)

For any of these alternatives, the rest of the proof is similar to the one demonstrated above (multiply both
sides by A and then apply the linearity of matrix multiplication to push the A inside the relevant sum and
next to the~vi) and will result in an equation similar to Equation 14 (that matches the alternative chosen).

Common mistakes included:

• When using the definition provided in Equation 9, not indicating that the at least one of scalars needs
to be different than zero.

• When using the definition provided in Equation 9, stating that all scalars need to be different than zero.

• When using any of the alternative implications (a)-(c) above, requiring that at least one scalar be
different than zero (or all different than zero).

• When using any of the alternative implications (a)-(c) above, not excluding the vector on the right hand
side from the linear combination on the left hand side.

6. Null It

What is the null space of the matrix

1 1 −2 3
0 0 −1 2
0 0 3 −6

?

Solutions:

We solve

1 1 −2 3
0 0 −1 2
0 0 3 −6

 ·


x1
x2
x3
x4

=

0
0
0


 1 1 −2 3 0

0 0 −1 2 0
0 0 3 −6 0

 =⇒︸︷︷︸
R2←−1·R2

R3←R3+3·R2
R1←R1−2·R2

 1 1 0 −1 0
0 0 1 −2 0
0 0 0 0 0


(18)

Now we can set x2 and x4 as free variables and write the following system of equations:

x1 =−a+b

x2 = a

x3 = 2b

x4 = b
x1
x2
x3
x4

= a


−1
1
0
0

+b


1
0
2
1


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Thus the nullspace of the matrix is:

span



−1
1
0
0

 ,


1
0
2
1



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PRINT your name and student ID:

[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem’s main
page.]
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PRINT your name and student ID:

Section 2: Free-form Problems (94+15 points)

7. Finding the bright cave (27pts total)

Nara the one-handed druid and Kody the one-handed ranger find themselves in dire straits. Before them is
a cliff with four cave entrances arranged in a square: two upper caves and two lower caves. Each entrance
emits a certain amount of light, and the two wish to find exactly the amount of light coming from each cave.
Here’s the catch: after contracting a particularly potent strain of ghoul fever, our intrepid heroes are only
able to see the total intensity of light before them (so their eyes operate like a single-pixel camera). Kody
and Nara are capable adventurers. But they don’t know any linear algebra - and they need your help.

Kody proposes an imaging strategy where he uses his hand to completely block the light from two caves at
a time. He is able to take measurements using the following four masks (black means the light is blocked
from that cave):

x2

x3

x1

x4

Cave Labels

Measurement 1 Measurement 2 Measurement 3 Measurement 4

Figure 1: Four image masks.

(a) (5pts) Let~x be the four-element vector that represents the magnitude of light emanating from the four
cave entrances. Write a matrix K that performs the masking process in Fig. 1 on the vector ~x,
such that K~x is the result of the four measurements.
Solutions:

~m = K ·~x


m1
m2
m3
m4

=


1 0 1 0
1 1 0 0
0 1 0 1
0 0 1 1




x1
x2
x3
x4


Note here that ~m is the vector of Kody’s measurements. The order of the rows does not matter (as
long as you tell us which measurement they each correspond to), but the order of the columns does.
Re-arranging the columns results in a different set of masks.
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PRINT your name and student ID:

(b) (10pts) Does Kody’s set of masks give us a unique solution for all four caves’ light intensities? Why
or why not?
Solutions:
Nope!
Two solutions are acceptable: 1) Notice that the sum of masks 1 and 3 will have exactly the same result
as sum of masks 2 and 4. So the four rows must be linearly dependent and hence K has a nontrivial
nullspace. Consequently, there would be infinitely valid solutions to any measurements taken.
2) Perform row reduction to see that the rows (and therefore the columns) do not span R4: In this case,
R4 is equivalent to all possible light intensities of the caves.

1 0 1 0
1 1 0 0
0 1 0 1
0 0 1 1




1 0 1 0
0 1 −1 0
0 1 0 1
0 0 1 1




1 0 1 0
0 1 −1 0
0 0 1 1
0 0 1 1




1 0 1 0
0 1 −1 0
0 0 1 1
0 0 0 0


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PRINT your name and student ID:
(c) (12pts) Nara, in her infinite wisdom, places her one hand diagonally across the entrances, covering

two of the cave entrances. However her hand is not wide enough, letting in 50% of the light from the
caves covered and 100% of the light from the caves not covered. The following diagram shows the
percentage of light let through from each cave:

50% 100%
100% 50%

Does this additional measurement give them enough information to solve the problem? Why or
why not?
Solutions:
The answer is yes, the additional measurement does give them enough information to solve the prob-
lem. Since Nara’s measurement is linearly independent from the other four, we are now able to solve
for all four light intensities uniquely.
This can be shown using Gaussian elimination with the addition of the following equation:

m5 =
1
2

x1 + x2 + x3+
1
2

At this point you can either add this equation to make a 5x4 system of equations, or you can remove
one of Kody’s masks to make a 4x4 system of equations. Here, we write it as a 5x4 matrix:

1 0 1 0
1 1 0 0
0 1 0 1
0 0 1 1

0.5 1 1 0.5




1 0 1 0
0 1 −1 0
0 1 0 1
0 0 1 1
0 1 0.5 0.5




1 0 1 0
0 1 −1 0
0 0 1 1
0 0 1 1
0 0 1.5 0.5




1 0 1 0
0 1 −1 0
0 0 1 1
0 0 0 0
0 0 0 −1


Notice here that in spite of the row of zeros, we still have four pivot columns. In other words, we
have a system of four unkowns and four linearly independent equations. Therefore, we can uniquely
determine all four light intensities given Nara’s added measurement.
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PRINT your name and student ID:

8. A Tale of Two Cities (24pts +15pts)

[NOTE: The last two parts of this problem are extra credit. Do them if you have time, but don’t get
stuck on them if you don’t.]

There are two isolated cities in the desert. They each have their own network of roads and intersections, as
shown in Figure 2. (Note: The arrows are oriented arbitrarily – net traffic can flow in either direction along
a road). The citizens of these cities are careful drivers, and consequently, the net traffic flows along roads
always obey the flow conservation constraints (net cars per hour into an intersection equals the net cars per
hour leaving that intersection).

A

B

C
t3

t1

t2

E D

F

t4

t5
t6

Figure 2: The traffic networks of two isolated cities.

(a) (7pts) We know how to model the net traffic flows within each city individually (from the Homework).
We would like to jointly model the net traffic flows of both cities. That is, let the net traffic flow
(cars/hr) along all roads be described by a vector

~t =



t1
t2
t3
t4
t5
t6


Find a matrix B such that the set of valid net traffic flows is exactly the nullspace of B (ie, all~t
such that B~t =~0).
Solutions:
B is the incidence matrix of the traffic network:

B =



−1 0 +1 0 0 0
+1 −1 0 0 0 0
0 +1 −1 0 0 0
0 0 0 −1 0 +1
0 0 0 +1 −1 0
0 0 0 0 +1 −1


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There is one row per node, corresponding to the constraint that the net flow of traffic into the node is
0. In the above B, we ordered nodes as A,B,C,D,E,F , and used the convention that a positive value of
ti means a positive net flow directed along the arrow of t7. Any matrix row-equivalent to B is correct.
(In particular, this means the sum of each column of B must be 0.)
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(b) (5pts) A new road is constructed between the two cities, as shown in Figure 3.

A

B

C
t3

t1

t2

E D

F

t4

t5
t6

t7

Figure 3: The traffic network after a new road is constructed.

Let traffic flows be described by a vector

~t =



t1
t2
t3
t4
t5
t6
t7


Find a matrix B′ such that the valid traffic flows are exactly the nullspace of B′.
Hint: B′ will have the form

B′ =

 B ~b

as in you only need to add a single column~b to the matrix B from the previous part. Feel free to just
write down the vector~b. You don’t have to write out the numbers of B again.
Solutions: The column~b corresponds to the road t7, which exits node C and enters node E:

~b =



0
0
−1
0
+1
0


(In our B from the previous part, node C corresponds to the third row, and node E corresponds to
the fifth row). Note that this must be consistent with the previous part: If you constructed B using
a different ordering of nodes (that is, if the rows of B were permuted), then the entries in~b must be
permuted accordingly.
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Written explicitly, B′ is:

B′ =



−1 0 +1 0 0 0 0
+1 −1 0 0 0 0 0
0 +1 −1 0 0 0 −1
0 0 0 −1 0 +1 0
0 0 0 +1 −1 0 +1
0 0 0 0 +1 −1 0


Any explicit B′ that is row-equivalent to this is also correct.
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(c) (12pts) Does adding this additional road change the possible traffic flows of the two cities? That is,
is there any valid flow~t for which the additional road has non-zero flow (t7 6= 0)? Give an explicit
example of such a flow or an argument why one cannot exist.
(Hint: One way of doing this is to recall that each row in the incidence matrix corresponds to the
constraint that the total flow into an intersection is zero. Can you interpret the constraint resulting
from the sum of all the rows corresponding to intersections in a city? )
Solutions: No, any valid flow~t must have t7 = 0.
There are several ways to see this. First, intuitively: If for example t7 > 0, then there is a net flow
of cars from the first city to the second. Thus, at least intuitively, some conservation constraint must
be violated, because cars are “draining” from the first city and “accumulating” in the second. But our
conservation constraints say that this accumulation cannot happen at any single intersection, and so it
cannot happen at all within a city (which is a collection of intersections). Development of this intuitive
argument received partial credit.
The formal argument suggested in the hint is: Consider summing all the constraints corresponding to
nodes in the first city (that is, the first 3 rows of B′). Each row corresponds to the constraint that the
net flow into an intersection is zero. Summing a set of rows corresponds to the constraint that the net
flow into a set of intersections is zero. Thus, summing the first three rows will yield the constraint that
the net flow into the first city is zero. But t7 is the only road out of the first city, so t7 = 0.
Explicitly, any valid~t satisfies

B′~t =~0 (19)

Therefore, it must also satisfy:[
1 1 1 0 0 0

]
B′~t =

[
1 1 1 0 0 0

]
~0 (20)

(21)

Which simplifies to: [
1 1 1 0 0 0

]
B′~t =~0 (22)

[
1 1 1 0 0 0

]


−1 0 +1 0 0 0 0
+1 −1 0 0 0 0 0
0 +1 −1 0 0 0 −1
0 0 0 −1 0 +1 0
0 0 0 +1 −1 0 +1
0 0 0 0 +1 −1 0

~t =~0 (23)

[
0 0 0 0 0 0 −1

]
~t = 0 (24)

Which is just the constraint −t7 = 0.
Remark: Notice that this argument easily generalizes to the case of two arbitrarily-complex isolated
cities, connected by a single road.
Alternate Solutions: Any correct formal argument received full credit. For example, noticing that
t1 = t2 = t3, and therefore t7 = 0, by considering the constraint of node C. It was also possible to
row-reduce B′, find a basis for the nullspace, and argue that all basis vectors have t7 = 0.
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(d) (BONUS 5pts) Now suppose instead that two roads are constructed between the cities, as shown in
Figure 4.

A

B

C
t3

t1

t2

E D

F

t4

t5
t6

t7

t8

Figure 4: The traffic network after two new roads are constructed.

Let traffic flows be described by a vector~t ∈ R8.
Does adding this additional pair of roads change the possible traffic flows of the two cities (beyond the
case when the two cities were not connected)? That is, is there any valid flow~t for which at least one
of the additional roads has non-zero flow (t7 6= 0 or t8 6= 0)? Give an explicit example of such a flow
or an argument why one cannot exist.
Solutions: Yes, there are new flows possible here. For example, the flow around the loop C−E−
F−B:

~t =



0
1
0
0
1
0
1
1


Any explicit valid flow vector~t with t7 6= 0 received full credit.
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(e) (BONUS 10pts) Before they were connected, both cities individually had sensors set up to measure
their traffic flows. That is, they measured the flows along some set of roads, and were able to re-
construct the flows along all roads in their isolated city. After the two new roads of Figure 4 were
constructed, the state’s engineers added two additional sensors, one on each road (on t7 and t8). Using
the data from each city’s sensors, and these two new sensors, they were able to recover the flows of all
roads in the network.
However, one day the sensor on t7 breaks. Can they still recover all the flows, using only the
remaining sensors? Give an argument for why or why not.
Solutions: Yes. First, we will show that t7 = t8 for all valid flows. Therefore, they can recover the
value of the broken sensor at t7, knowing only the value of t8. Now the situation is as if all the sensors
were working, so by assumption they can recover all the flows.
We can show that t7 = t8 analogously to the argument for part (c). Intuitively, this is true because the
net flow into the first city must be zero. (In fact, our argument from part (c) is exactly how to make
this intuition formal).
In this case, the incidence matrix is the following:

B′′ =



−1 0 +1 0 0 0 0 0
+1 −1 0 0 0 0 0 +1
0 +1 −1 0 0 0 −1 0
0 0 0 −1 0 +1 0 0
0 0 0 +1 −1 0 +1 0
0 0 0 0 +1 −1 0 −1


(Which has two additional columns over B from the first part).
Now, any valid~t satisfies

B′′~t =~0 (25)

Therefore, it must also satisfy:[
1 1 1 0 0 0

]
B′′~t =

[
1 1 1 0 0 0

]
~0 (26)

(27)

Which simplifies to: [
1 1 1 0 0 0

]
B′′~t =~0 (28)

[
1 1 1 0 0 0

]


−1 0 +1 0 0 0 0 0
+1 −1 0 0 0 0 0 +1
0 +1 −1 0 0 0 −1 0
0 0 0 −1 0 +1 0 0
0 0 0 +1 −1 0 +1 0
0 0 0 0 +1 −1 0 −1

~t =~0 (29)

[
0 0 0 0 0 0 −1 +1

]
~t = 0 (30)

Which is just the constraint −t7 + t8 = 0.
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Alternate Solutions: It was also possible to row-reduce B′′, find a basis for the nullspace, and show
that all basis vectors have t7 = t8 (and therefore all valid flows must have t7 = t8 as well).
Notice that in this problem, we do not know the exact sensor placements of each city. Solutions which
made assumptions about the particular sensor arrangements of the cities received partial credit. (In
theory, it was possible to enumerate all possible valid sensor arrangements, and confirm that each one
works by the procedure of Homework 3.)
Some students argued that it is sufficient to have one sensor per “independent loop”. And since the
cities already had sensors on their individual loops (necessarily, by assumption), it is sufficient to
have one sensor on the new “independent loop” created by adding the two new roads. This is correct
intuition. However, the concept of “independent loop” was not defined or developed in this class, so
any argument using “independent loops” without definition only received partial credit.
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[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem’s main
page.]
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9. Justin Beaver (43pts)

In Homework 3, there was a question about Justin Bieber’s Segway — that was about controlling a multi-
dimensional system with one control input. In this problem, we will instead think about a curious and
superintelligent beaver watching the water level in a pool — this is implicitly about how many sensors are
needed to measure the state of a multi-dimensional system.

Three superintelligent rodents live in a network of pools. Justin Beaver lives in pool 1. Selena Gopher lives
in pool 2. And Mousey Cyrus lives in pool 3. They are sadly not on talking terms, but Justin really wants to
know about the other pools.

Suppose there is a network of pumps connecting the three different pools, given in the figure. x1[t], x2[t],
and x3[t] is the water level in each pool at time step t. At each time step, the water from each pool is pumped
along the arrows. The water levels are updated according to the matrix

2"1"

3"

1.0"

1.0"
1.0"

x1[t +1]
x2[t +1]
x3[t +1]

=

0 1 0
0 0 1
1 0 0


︸ ︷︷ ︸

A

x1[t]
x2[t]
x3[t]



(a) (5pts) Justin lives in pool 1 so he can watch the water level in this pool. He also knows exactly how
the pumps work — i.e. knows the pump matrix A. Can Justin figure out the initial water levels in
all three pools just by watching the water levels in his pool as time goes by? Describe (briefly) in
words how to do this. How many times does Justin need to observe the water in his own pool to
figure this out?
(Hint: No “linear algebra” machinery is needed here. Just think about what Justin observes as time
goes by.)
Solutions: Because the water flow from one pool into another is fairly simple in this system, we
can figure out intuitively that Justin will be able to figure out the initial water level in each pool. (We
will see later that in situations where the system of pumps is more complex, we will need to be much
more careful. There are some more complex systems of pumps that will be able to effectively hide
information about water levels in the other pools from Justin.)
In this case, however, Justin’s analysis is straight-forward. At each time step, all the water from pool
1 flows into pool 3, all the water from pool 2 flows into pool 1, and all the water from pool 3 flows
into pool 2. Because of the cyclic way in which the water flows, Justin only has to wait 3 time steps in
order to figure out the initial water level in each pool. At time step t=0, Justin can measure the initial
water level in pool 1. At time t=1, the water level in pool 1 will be equivalent to the initial water level
in pool 2, and at time t=2, the water level in pool 1 will be equivalent to the initial water level in pool
3. Thus Justin needs to wait 3 time steps (including the initial time step) – t=0, t=1, and t=2 – in order
to figure out the initial water levels in all the pools.
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(b) (5pts) Consider now a general pump matrix A that is known to Justin, not necessarily the one in the
example above. Just for this part, suppose Justin had been told the initial water levels~x[0] by someone
else. Could he figure out~x[t]? Write an expression for~x[t] given the initial levels~x[0] and the pump
matrix A.
Solutions: If Justin knows~x[0], he can use what he knows about how the system changes over time
(the dynamics of the system) to figure out~x[t]. These dynamics are summarized in the pump matrix A.
A tells us how~x updates at each time step. Every time we multiple on the left by A, we figure out what
~x will be one time step in the future. Thus we can calculate

~x[1] = A~x[0] (31)

~x[2] = A~x[1] = A(A~x[0]) = A2~x[0] (32)

~x[3] = A~x[2] = A3~x[0]) (33)

Thus the general expression for~x[t] in terms of A and~x[0] is

~x[t] = At~x[0] (34)

This expression is useful for calculating the initial water levels (as we will see in part (d)). It is also
interesting because it points out that if Justin is able to calculate~x[0] then he really is able to calculate
the water level of each pool at any time step in the future using this equation.

(c) (5pts) Suppose we use y[t] to denote Justin’s measurement of the water level in pool 1 at time t. We
know that y[t] = x1[t]. Find a vector~c such that

y[t] =~cT~x[t]

Solutions: In this problem, we want to mathematically describe what Justin is doing when he
measures the water level in his pool. He is measuring x1 which is the first element of the vector~x. We
can describe this measuring process as taking the inner product of~x and specific vector~c. That vector
~c is given by

~c =

1
0
0

 (35)

Thus we have

y[t] = 〈~c,~x[t]〉=~cT~x[t] =
[
1 0 0

]x1[t]
x2[t]
x3[t]

= 1 · x1[t]+0 · x2[t]+0 · x3[t] = x1[t] (36)

as desired
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(d) (5pts) We want to know if tracking the water level in pool 1 is enough to eventually figure out the
initial water level in all the pools. First find a matrix D in terms of~c and A (and powers of A) such
that 

y[0]
y[1]

...
y[T −1]

=

[
D

]x1[0]
x2[0]
x3[0]

 (37)

(Hint: Think about what the rows of D should be. It suffices to give an expression for the jth row D j of
D.)
Solutions: Now we start getting into the heart of the problem. We want to figure out how Justin can
calculate the initial water levels even if the pump matrix A is not as simple as in part (a).
Over time Justin will acquire a bunch of measurements of the water level in his pool, y[0],y[1], . . . ,y[t].
We want to write these measurements in terms of ~c, A, and ~x[0] so that we can write a system of
equations that will allow us to solve for~x[0].
Using the expressions from parts (b) and (c), we can write

y[t] =~cT x[t] =~cT At~x[0] (38)

Writing each measurement as a row of a matrix equation we get
y[0]
y[1]

...
y[T −1]

=


~cT~x[0]
~cT A~x[0]

...
~cT AT−1~x[0]

=


~cT

~cT A
...

~cT AT−1


︸ ︷︷ ︸

D

~x[0] (39)

Thus if you count the first row as row 1, the second row as row 2, etc, then the jth row of D, D j, can
be written as

D j =~cT A j−1 (40)

It was also fine if you counted the first row as row 0, the second row as row 1, etc. In this case, D j, is
given by

D j =~cT A j (41)
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(e) (13pts) Now assume we have a specific network of pumps with a different pump matrix.

2"1"

3"

1/4"

1/2"1"
1/2"

3/4"

x1[t +1]
x2[t +1]
x3[t +1]

=

0 1/4 1/2
0 3/4 1/2
1 0 0


︸ ︷︷ ︸

A

x1[t]
x2[t]
x3[t]



Given this specific A matrix, how many time steps T of observations in pool 1 will Justin need in
order to recover the initial water levels~x[0]? Argue why this number of observations is enough.
Solutions: Using the equation from part (d), we can start to see when Justin will be able to recover
~x[0] based on a specific A matrix. In order to find a unique ~x[0], Justin needs to be able to solve the
equation

y[0]
y[1]

...
y[T −1]

=


~cT

~cT A
...

~cT AT−1


︸ ︷︷ ︸

D

~x[0] (42)

The first thing we notice is that after a few time steps, Justin will have more equations than unknowns.
Often times when there are more equations than unknowns the system has no solution. However, in
this case since each physical measurement y (the water level in pool 1) is the result of a physical pro-
cess (water being pumped between pools according to A) starting from some real initial water level,
~x[0], we know that that real initial water level, ~x[0] will be a solution. Thus we know that a solution
exists.

What is not obvious immediately is whether our system of equations gives us enough information to
solve for the real solution. It is possible that there will be multiple ~x[0]’s that solve this equation. In
this case, we won’t be able to figure out the initial water levels.

To see how this might happen, suppose that all but two of the measurements summarized in the equa-
tion (42) are redundant, i.e. the row vectors~cT ,~cT A, . . . ,~cT AT−1 are linearly dependent living in some
two dimensional subspace of R3. In this case if, we row reduce D, we will end up with zeros in all the
rows except 2. This means that we will have only 2 pivots and thus 1 free variable. Therefore, D has a
nullspace that contains more than just~0 (D has a non-trivial nullspace).

This is problematic because multiple different initial water levels will give the same measurements.
Consider the true initial water level~x[0] and a vector that lives in the nullspace of D,~xNS[0]. Note that
through our measurement process, we won’t be able to tell the difference between~x[0] and~x[0]+~xNS[0]
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since both of them will give the same sequence of measurements y[0],y[1], . . .y[T −1].[
D
](
~x[0]+~xNS[0]

)
=
[

D
]
~x[0]+

[
D
]
~xNS[0]︸ ︷︷ ︸
~0

=
[

D
]
~x[0] (43)

Thus in order to determine~x[0] uniquely we need at least 3 rows of D to be linearly independent. It
turns out that the first three rows ~cT ,~cT A, and ~cT A2 are linearly independent thus Justin needs only
3 time steps (t = 0, t = 1, t = 2) to solve for ~x[0]. In order to get full credit on this part, you had
to show that the first three rows are linearly independent. The easiest way to show this is by doing
Gaussian elimination which we will do when we solve for the answer in part (f). [It is perfectly ok to
point to a later problem part when solving a problem.] Note that you could also use three other linearly
independent rows to solve for the solution but the first three rows are the easiest to calculate.
Here we see also why we have to be careful if A is more complicated. For a complicated A, it is difficult
to tell if the vectors~cT ,~cT A,~cT A2, . . . will span all of R3 until we calculate them out. If they don’t span
R3, then D will have a non-trivial nullspace and this nullspace represents a set of initial water levels
that are hidden from Justin’s measurements. There is a general condition called observability of A
and ~c that tells us when this nullspace exists. It has to do with the relationship between ~c and the
eigenvectors of the matrix A. Maybe we’ll get it to it later in the course or in EE16b.
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(f) (10pts) For the T chosen in the previous part and the pump matrix A given there, suppose Justin

measures

y[t] = 1 for t = 0,1, ...,(T −1) (44)

What was~x[0]? (Show work)
Solutions: In this part we will solve for ~x[0] using Gaussian Elimination and in doing so we will
show that the first three rows of D are linearly independent.
We want to solve the system of equationsy[0]

y[1]
y[2]

=

 ~cT

~cT A
~cT A2


︸ ︷︷ ︸

D̄=


−D1−
−D2−
−D3−



x1[0]
x2[0]
x3[0]

 (45)

We first need to calculate~cT A and~cT A2.

~cT A =
[
1 0 0

]0 1/4 1/2
0 3/4 1/2
1 0 0

=
[
0 1/4 1/2

]
(This is just the 1st row of A)

(46)

~cT A2 =
[
1 0 0

]0 1/4 1/2
0 3/4 1/2
1 0 0

0 1/4 1/2
0 3/4 1/2
1 0 0

 (47)

=
[
1 0 0

]1/2 3/16 1/8
1/2 9/16 3/8
0 1/4 1/2

=
[
1/2 3/16 1/8

]
(This is just the 1st row of A2)

(48)

Writing out the augmented system for Equation (45) given the values y[0] = y[1] = y[2] = 1 we have
−~cT−

... y[0]

−~cT A−
... y[1]

−~cT A2−
... y[2]

=


1 0 0

... 1

0 1/4 1/2
... 1

1/2 3/16 1/8
... 1

 (49)

Row reducing, we get
1 0 0

... 1

0 1/4 1/2
... 1

1/2 3/16 1/8
... 1

 =⇒︸︷︷︸
R2←4·R2
R3←16·R3


1 0 0

... 1

0 1 2
... 4

8 3 2
... 16

 =⇒︸︷︷︸
R3←R3−8·R1


1 0 0

... 1

0 1 2
... 4

0 3 2
... 8

 (50)

=⇒︸︷︷︸
R3←R3−3·R2


1 0 0

... 1

0 1 2
... 4

0 0 −4
... −4

 =⇒︸︷︷︸
R3←−4·R3


1 0 0

... 1

0 1 2
... 4

0 0 1
... 1

 =⇒︸︷︷︸
R2←R2−2·R3


1 0 0

... 1

0 1 0
... 2

0 0 1
... 1

 (51)
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Thus we have that

~x[0] =

1
2
1

 (52)

We also have shown that D̄ row reduces to the identity. Thus the first 3 rows of D are linearly in-
dependent and~0 is the only vector in the nullspace of D and there is a unique solution for Equation
(45).
Some other methods you could have used to solve for~x[0] and show linear independence were solving
for D̄−1 by row reducing the augmented system[

I
... D̄

]
=⇒

[
D̄−1 ... I

]
~x[0] =

[
D̄−1

]y[0]
y[1]
y[2]

 (53)

or using your initial knowledge that x1[0] = 1 to write a system of 2 equations in the 2 unknowns, x2[0]
and x3[0], and solve that system. (This is equivalent to starting at the third step of the row reduction
shown above. )
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[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem’s main
page.]
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[Doodle page! Draw us something if you want or give us suggestions or complaints. You can also use this
page to report anything suspicious that you might have noticed.]
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