
CS 61A Structure and Interpretation of Computer Programs
Fall 2015 Midterm 1 Solutions

INSTRUCTIONS

• You have 2 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5” × 11”
crib sheet of your own creation and the official CS 61A midterm 1 study guide.

• Mark your answers on the exam itself. We will not grade answers written on scratch paper.

Last name

First name

Student ID number

BearFacts email (_@berkeley.edu)

TA

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.
(please sign)

http://berkeley.edu

2

1. (12 points) Evaluators Gonna Evaluate

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter
when the expression is evaluated. The output may have multiple lines. If an error occurs, write “Error”.

Hint : No answer requires more than 5 lines. (It’s possible that all of them require even fewer.)

The first two rows have been provided as examples.

Recall: The interactive interpreter displays the value of a successfully evaluated expression, unless it is None.

Assume that you have started python3 and executed the following statements:

def jazz(hands):

if hands < out:

return hands * 5

else:

return jazz(hands // 2) + 1

def twist(shout , it , out =7):

while shout:

shout , out = it(shout), print(shout , out)

return lambda out: print(shout , out)

hands , out = 2, 3

Expression Interactive Output
pow(2, 3) 8

print(4, 5) + 1
4 5
Error

print(None, print(None))
None
None None

jazz(5) 11

(lambda out: jazz(8))(9) 12

twist(2, lambda x: x-2)(4)
2 7
0 4

twist(5, print)(out)

5
5 7
None 3

twist(6, lambda hands: hands-out, 2)(-1)

6 2
3 None
0 -1

Name: 3

2. (12 points) Environmental Policy

(a) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names and parent annotations to all local frames.

• Add all missing values created or referenced during execution.

• Show the return value for each local frame.

Global frame the

func clin(ton) [parent=Global]

def the(donald):
 return donald + 5

def clin(ton):
 def the(race):
 return donald + 6
 def ton(ga):
 donald = ga - 1
 return the(4) - 3
 return ton

donald, duck = 2, clin(the)
duck = duck(8)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

clin

func the(donald) [parent=Global]

f1: clin [parent=Global]

Return Value

f2: ton [parent=f1]

Return Value

f3: the [parent=f1]

Return Value

donald

duck

2

ton

the func the(race) [parent=f1]

func ton(ga) [parent=f1]

ga 8

donald 7

race 4

8

5

5

4

(b) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames. The
<line ...> annotation in a lambda value gives the line in the Python source of a lambda expression.

A complete answer will:

• Add all missing names and parent annotations to all local frames.

• Add all missing values created or referenced during execution.

• Add all missing parents of function values.

• Show the return value for each local frame.

Global frame inside

func λ(fear) <line 8> [parent=Global]

def inside(out):
 anger = lambda fear: fear(disgust)
 fear = lambda disgust: anger(out)
 disgust = 3
 fear(5)

fear, disgust = 2, 4
inside(lambda fear: fear + disgust)

 1
 2
 3
 4
 5
 6
 7
 8

fear

func inside(out) [parent=Global]

f1: inside [parent=Global]

Return Value

disgust

f4: λ <line 8> [parent=Global]

Return Value

f3: λ <line 2> [parent=f1]

Return Value

f2: λ <line 3> [parent=f1]

Return Value

func λ(fear) <line 2> [parent=f1]

func λ(disgust) <line 3> [parent=f1]

2

4

out

anger

fear

disgust 3

disgust 5

None

fear

fear 3

7

7

7

Name: 5

3. (10 points) Digit Fidget

IMPORTANT DEFINITION Each digit in a non-negative integer n has a digit position. Digit posi-
tions begin at 0 and count from the right-most digit of n. For example, in 568789, the digit 9 is at position 0
and digit 7 is at position 2. The digit 8 appears at both positions 1 and 3.

(a) (3 pt) Implement the find_digit function, which takes a non-negative integer n and a digit d greater
than 0 and less than 10. It returns the largest (left-most) position in n at which digit d appears. If d
does not appear in n, then find_digit returns False. You may not use recursive calls.

def find_digit(n, d):

""" Return the largest digit position in n for which d is the digit.

>>> find_digit (567, 7)

0

>>> find_digit (567, 5)

2

>>> find_digit (567, 9)

False

>>> find_digit (568789 , 8)

3

"""

i, k = 0, False

while n:

n, last = n // 10, n % 10

if last == d:

k = i

i = i + 1

return k

(b) (2 pt) Circle all values of y for which the final expression below evaluates to True. Assume that find_digit
is implemented correctly. The compose1 function appears on the left column of page 2 of your study guide.

1 2 3 4 5 6 7 8 9

f = lambda x: find_digit (234567 , x)

compose1(f, f)(y) == y

6

(c) (3 pt) Implement luhn_sum. The Luhn sum of a non-negative integer n adds the sum of each digit in an
even position to the sum of doubling each digit in an odd position. If doubling an odd digit results in a
two-digit number, those two digits are summed to form a single digit. You may not use recursive calls or
call find_digit in your solution.

def luhn_sum(n):

""" Return the Luhn sum of n.

>>> luhn_sum (135) # 1 + 6 + 5

12

>>> luhn_sum (185) # 1 + (1+6) + 5

13

>>> luhn_sum (138743) # From lecture: 2 + 3 + (1+6) + 7 + 8 + 3

30

"""

def luhn_digit(digit):

x = digit * multiplier

return (x // 10) + x % 10

total , multiplier = 0, 1

while n:

n, last = n // 10, n % 10

total = total + luhn_digit(last)

multiplier = 3 - multiplier

return total

(d) (2 pt) A non-negative integer has a valid Luhn sum if its Luhn sum is a multiple of 10. Implement
check_digit, which appends one additional digit to the end of its argument so that the result has a valid
Luhn sum. Assume that luhn_sum is implemented correctly.

def check_digit(n):

""" Add a digit to the end of n so that the result has a valid Luhn sum.

>>> check_digit (153) # 2 + 5 + 6 + 7 = 20

1537

>>> check_digit (13874)

138743

"""

return 10 * n + -luhn_sum (10 * n) % 10

Name: 7

4. (6 points) Zombies!

IMPORTANT In this question, assume that all of f, g, and h are functions that take one non-negative
integer argument and return a non-negative integer. You do not need to consider negative or fractional numbers.

(a) (4 pt) Implement the higher-order function decompose1, which takes two functions f and h as arguments.
It returns a function g that relates f to h in the following way: For any non-negative integer x, h(x) equals
f(g(x)). Assume that decompose1 will be called only on arguments for which such a function g exists.
Furthermore, assume that there is no recursion depth limit in Python.

def decompose1(f, h):

""" Return g such that h(x) equals f(g(x)) for any non -negative integer x.

>>> add_one = lambda x: x + 1

>>> square_then_add_one = lambda x: x * x + 1

>>> g = decompose1(add_one , square_then_add_one)

>>> g(5)

25

>>> g(10)

100

"""

def g(x):

def r(y):

if h(x) == f(y):

return y

else:

return r(y+1)

return r(0)

return g

(b) (2 pt) Write a number in the blank so that the final expression below evaluates to 2015. Assume decompose1
is implemented correctly. The make_adder and compose1 functions appear on the left column of page 2 of
your study guide.

e, square = make_adder (1), lambda x: x*x

decompose1(e, compose1(square , e))(3) + 2000

