Name	÷

Section

Math 54, F.Rezakhanlou First Midterm, Sept. 30, 1996

Each question should be answered directly. Use the back of these sheets if necessary. Justify your assertions; include detailed explanation, and show your work. Closed book exam, no sheet of notes and no calculator.

1. Let
$$A = \begin{bmatrix} 0 & 2 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ \beta & 3 & 2 & 3 \\ 1 & 5 & 1 & 1 \end{bmatrix}$$
.

(a) $(8 \ pts)$

Calculate the determinant.

Calculate the determinant of A.

(b) (2 pts) For what values of β is A an invertible matrix?

Sect	cion	•

- 2. Let A be as in the previous problem.
 - (a) (5 pts)
 What is the reduced echelon form of A when A is invertible?

(b) (15 pts)
Find an echelon form of A when A is not invertible.

(c) (10 pts) When A is not invertible, solve the equation $A\vec{x} = 0$.

3. (15 pts)

(a) Show
$$A^2 = 4A$$
.

(b) Let
$$B = A + 2I$$
. Show $8B - B^2 - 12I = 0$.

(c) Show that B is invertible and find B^{-1} .

4. True - False (20 points)

For each of the questions below, indicate if the statement is **true** or **false**. If true, **justify** (give a brief explanation or quote a relevant theorem from the course), and if false, give a counter-example or explain.

(a) If A and B are two square matrices, then $(A+B)(A-B)=A^2-B^2$.

(b) Suppose A and B are two square matrices and a is a vector such that $A\mathbf{a} = 2\mathbf{a}$ and $B\mathbf{a} = 3\mathbf{a}$. Then $AB\mathbf{a} = 6\mathbf{a}$.

(c) If $\det A = 2$, then $\det A^{-1} = \frac{1}{2}$.

(d) If $\det A = 2$, then $\det(5A) = 10$.

(e) If A is a 3×3 matrix with all ones, then $\det A = 0$.