CS 61A Structure and Interpretation of Computer Programs
Spring 2015 FINAL EXAM SOLUTIONS

INSTRUCTIONS

e You have 3 hours to complete the exam.

e The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5” x 11”
crib sheet of your own creation and the 3 official 61A midterm study guides attached to the back of this exam.

e Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation.

Last name

First name

SID

Login

TA & section time

Name of the person to
your left

Name of the person to
your right

All the work on this exam
is my own. (please sign)

For staff use only

Q.1] Q2/Q.3] Q4] Q.5] Q6] Total

/16| /14| /8| /18| /14| /10 /80

THIS PAGE CONTAINS NO QUESTIONS

For your reference, a complete implementation of the Tree class appears below.

class Tree:
"""A tree with entry as its root value.

>>> Tree (1)

Tree (1)

>>> Tree (1, [1)

Tree (1)

>>> Tree(Tree (1))

Tree (Tree (1))

>>> t = Tree(1l, [Tree(2), Tree(3)])

>>> t

Tree(1l, [Tree(2), Tree(3)])

>>> t.entry

1

>>> t.branches

[Tree(2), Tree(3)]

def __init__(self, entry, branches=()):
self .entry = entry
for branch in branches:

assert isinstance(branch, Tree)

self .branches = list(branches)

if self.branches:
branches_str ’, 0+ repr(self.branches)
else:
branches_str = ’’
return ’Tree ({0}{1})’.format (self.entry, branches_str)

def repr__(self):

1. (16 points) Lumberjack

For each row below, fill in the blanks in the output displayed by the interactive Python interpreter when the
expression is evaluated. Expressions are evaluated in order, and expressions may affect later expressions.

Whenever the interpreter would report an error, write ERROR. You should include any lines displayed before
an error. Reminder: The interactive interpreter displays the repr string of the value of a successfully evaluated
expression, unless it is None. The first two rows are completed for you.

The Tree class appears on the previous page. It’s also on the Midterm 2 Study Guide, but the exam version is
complete. Assume you have started Python 3, executed the Tree class statement, then executed the following;:

odd = lambda x: (x % 2) == 1
big = lambda x: x > 2
f = lambda f: lambda g: lambda x: not (f(x) or g(x))

def choose(s, f):
for i in range(0, len(s)):
if £(s[i]):
return Tree(i, [Tree(j) for j in s[i:] if not £(j)1)

lumber = Tree (1)

jack = Tree(l, [lumber, lumber])
lumber.entry = 2

lumber = Tree (lumber)

class Wood(Tree):

def __init__(self, source):
source.entry += 1
Tree.__init__(self, Tree(source))
Expression Output
Tree(2, [Tree(3)]) Tree(2, [Tree(3)])
1/0 ERROR

tuple(map(odd, filter(big, range(5)))) (True, False)

sum(filter(f (big) (print), range(l, 5))) 2

lumber Tree(Tree(2))
jack.branches [Tree(2), Tree(2)]
print(choose([1], big)) None

choose([2, 3, 4], odd) Tree(1l, [Tree(4)])
choose([4, 3, 2], f(big) (odd)) Tree(2)

Wood(Tree(2)) Tree(Tree(Tree(3)))

2. (14 points) Hot and Cold

(a) (8 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:
e Add all missing names and parent annotations to all local frames.
e Add all missing values created during execution.
e Show the return value for each local frame.

VWO NOUD WN K

=

def summer(sun): Global frame summer ‘ _
def beach(summer, sun): [func summer(sun) [parent=Globall
return [summer(sun+1)]
def fun(beach):
nonlocal sun §1; summer [parent= Global 1
sun = sun + 2 -
beach = lambda s: [s, sunl]
' sun | 476
return beach(3) ‘
beach(fun, sun) __— func beach(summer, sun) [parent=
summer(4) beach ‘
fun ‘ ~
f1
Return Value | None func fun(beach) [parent=
f2: beach [parent= fl /]
summer ‘ —» func A(s) <line 7> [parent= f3
sun ‘ 4 list
_ 0
Return Value v
3: fun [parent= fl 1 l
beach ‘ list
‘ > 0 1
3 6
Return Value
f4: A [parent= f3]
s ‘ 3
Return Value

(b) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.
Examples of using the append and extend methods of lists appear on the Midterm 2 Study Guide.

A complete answer will:

e Add all missing names and parent annotations to all local frames.
e Add all missing values created during execution.
e Show the return value for each local frame.

=
OOV NOUTAWNR

=
N

def frozen(): Global frame frozen ‘ _
def let(): [func frozen() [parent=Globall
nonlocal it
if it: free ‘ f1
go, it = it[e], it[1:] func let() [parent=]
free.extend([it, gol) Vol
let()
it = [[2, 3]] f1; rozen [parent=_ 0003t /1/
let()
it.append(free) let ‘ list list
free = [] _ > 0
frozen() it ‘
S e ——
Return Value ‘ None
f2; et [parent= f 1 list
0 1
go | —T—
2 3
Return Value ‘ None
£3; let [parent= 1]
Return Value ‘ None

3. (8 points) Team Stream
When you complete all the questions on this page, all of the doctests of append should pass.

def append(s, t):
"""Return a stream with the elements of s followed by the elements of t.

>>> bits = Stream (0, lambda: Stream(1l)) # 0, 1

>>> taipei = append(bits.rest, bits) # 1, 0, 1

>>> taipei.first, taipei.rest.first, taipei.rest.rest.first
(1, 0, 1

>>> repeat(bits).rest.rest.rest.first # 0, 1, 0, (1), O,
1

>>> repeat(bits).rest.rest.rest.rest.first # 0, 1, 0, 1, (0),
0

>>> ten = unique(taipei) # 1, O
>>> ten.first, ten.rest.first, ten.rest.rest
(1, 0, Stream.empty)

if s is Stream.empty:
return t
return Stream(s.first, lambda: append(s.rest, t))

(a) (2 pt) Implement repeat, which takes a non-empty stream s that is an instance of the Stream class. It
returns an infinite stream that cycles through the elements of s in order. You may use the append function.

def repeat(s):
"""Return a stream that cycles infinitely through the elements of s."""

return Stream(s.first,

lambda: append(s.rest, repeat(s)))

(b) (2 pt) Implement unique, which takes a finite stream s that is either Stream.empty or a Stream instance.
It returns a stream of the unique elements in s. filter_stream appears on the Final Study Guide.

def unique(s):
"""Return a stream of the unique elements of s in the order that they
first appear in s. The result contains no repeated elements."""

if s is Stream.empty:
return s
t = filter_stream(lambda x: x != s.first, s.rest)

return Stream(s.first, lambda: unique(t))

(c) (2 pt) Circle all © expressions below that describe the total number of elements in the stream append (s, t)
for a finite stream s of length m and a finite stream t of length n.

O(1) ©(m) O(n) ©(m +n) O(m *n)

(d) (2 pt) Circle all © expressions below that describe the total number of function calls required to evaluate
append(s, t) for a finite stream s of length m and a finite stream t of length n.

O(1) ©(m) O(n) ©(m+n) O(m *n)

4. (18 points) Apply That Again

(a) (4 pt) Implement amplify, a generator function that takes a one-argument function f and a starting value
x. The element at index k that it yields (starting at 0) is the result of applying f k times to x. It terminates
whenever the next value it would yield is a false value, such as 0, >?, [], False etc.

def amplify(f, x):
"""Yield the longest sequence x, f(x), £(£(x)), ... that are all true values.

>>> list (amplify(lambda s: s[1:], ’boxes’))
[’boxes’, ’oxes’, ’xes’, ’es’, ’s’]

>>> list(amplify(lambda x: x//2-1, 14))
[14, 6, 2]

while x:
yield x
x = f(x)

(b) (6 pt) Answer the following three questions about the echo function below, which you should try to under-
stand by reading its implementation. Assume that amplify is implemented correctly.
def echo():
x =0
def gecko(y):
nonlocal x
x = x + 1
return y - X
return gecko

Circle the value of echo() (echo() (5)).

Circle all values of n below for which the expression list(amplify(echo(), n)) terminates.

Write the largest integer n less than 40 for which the expression list(amplify(echo(), n)) terminates

36

***Definition™**: A shrinking function £ is a function for which £ (x) < x for all positive integers x. In
addition, for any x, applying f a finite number of times will result in a number less than or equal to 0.

(c) (4 pt) Implement near_zero, which takes a shrinking function f and a positive starting number x. It returns
the smallest positive value that results from applying f to x zero or more times. Assume that amplsfy
(previous page) is implemented correctly. You may use it in your solution.

def near_zero(f, x):
"""Return the value nearest zero obtained by repeatedly applying the
shrinking function f to a non-zero number x.

>>> [near_zero(lambda x: x-4, k) for k in [3, 4, 5, 6, 7, 8, 911
[3, 4, 1, 2, 3, 4, 1]

last = x

for v in amplify(f, x):

if v < 0:
return last
last = v

return last

(d) (4 pt) Implement count_sums which counts the number of ways that a positive integer n can be partitioned
into a subset of the positive valuesm, f(m), £(f(m)), ... for ashrinking function £. No negative values
or repeated values can be included in the sum.

def count_sums(n, f, m):
"""Return the number of ways that n can be partitioned into unique positive
values obtained by applying the shrinking function f repeatedly to m.

>>> count_sums (6, lambda k: k-1, 4) # 4+2, 3+2+1

2

>>> count_sums (12, lambda k: k-2, 12) # 12, 10+2, 8+4, 6+4+2
4

>>> count_sums (11, lambda k: k//2, 8) # 8+2+1

1

if n == 0:

return 1

elif m <= 0 or n < O:
return O

else:

yes = count_sums(n-m, f, f(m))

no = count_sums(n, f, f(m))

return yes + no

5. (14 points) Treasure Hunt

(a) (4 pt) Leaprechauns leap from one pot-o’-gold to the next, collecting treasure. However, they can’t collect
two adjacent pots. Implement leap, which takes a list of pots. It returns the maximal sum of values in pots
that doesn’t include two adjacent pot values. Hint: sum([]) is 0, sum([2]) is 2, and max (3, 4) is 4.

def leap(pots):
"""Return the maximal value of collecting pots that are not adjacent.

>>> leap([2, 4, 3]) # Collect 2 and 3

5

>>> leap([4, 20, 9, 3, 6, 2]) # Collect 20 and 6
26

nmnn

if len(pots) <= 1:
return sum(pots)

return max(pots[0] + leap(pots[2:]1), leap(pots[1:1))

(b) (6 pt) The Leaprechaun Ida Clare declares, “Let’s use a declarative language!” The pots table contains
indexed pot values. A path is a comma-separated list of values from pots, ordered by their places.

A path cannot contain values from adjacent places.

Implement a select statement that returns a one-row, two-column table. The first column should contain
the maximal path through pots. The second column should contain the total value of the maximal path.

Your solution should provide the correct result even if the contents of the pots table were to change.

create table pots as

select 0 as place, 4 as value union
select 1 , 20 union
select 2 s 9 union
select 3 s 3 union
select 4 s 6 union
select 5 , 2;

with

paths (path, last, total) as (

select value, place, value from pots union

select path || ", " || value, place, total + value

from paths, pots

where place - last > 1

select path, max(total) from paths;

-- Expected result:
-- 20,6126

10

(c) (4 pt) Higher-order Leaprechauns can collect any pots they wish, but get a bonus when they jump over
some pots. They always take the first pot before jumping. Implement gather, which takes a list of pots and
a function bonus (k) that returns the bonus for jumping over exactly k pots. gather returns the maximum
total gold plus bonus that is possible to attain, along with a linked list of the pot values collected. The Link
class appears on the Midterm 2 Study Guide.

def gather (pots, bonus):
"""Return the maximum total value of pots gathered *plus* jump bonuses.
Also return a linked list of pot values gathered to reach this total.

>>> gold = [4, 20, 9, 3, 6, 2]
>>> gather (gold, lambda k: 0) # No jumping bonus, so gather everything
(44, Link (4, Link (20, Link (9, Link(3, Link (6, Link(2)))))))

>>> hop = lambda k: [0, 10, O, O, O, O, O, 0][k]

>>> gather (gold, hop) # Jump O, Jump O, Jump 1 (+10), Jump 1 (+10) to end
(59, Link (4, Link (20, Link(9, Link(6)))))

>>> leap = lambda k: [0, O, 30, 20, 0, O, O, O][k]

>>> gather (gold, leap) # Jump 2 (+30), Jump 2 to end (+30)
(67, Link(4, Link(3)))

nnn

return O, Link.empty

def total(k):

return pots[0] + bonus(k) + gather(pots[k+1:], bonus) [0]

best = max(range(len(pots)), key=total)

rest gather (pots[best+1:], bonus) [1]

return total(best), Link(pots[0], rest)

11

6. (10 points) SQL in Scheme

A SQL-like table can be implemented in Scheme as a list of lists. The first element of a table is a list of column
names. Each subsequent element is a list of values in a row. (Note: The semicolon line is just a comment.)

scm> (define cafes (list
’>(cafe item)

’(nefeli espresso)
’(nefeli Dbagels)

’(fsm coffee)
’(fsm bagels)
> (fsm espresso)))

(a) (2 pt) The get procedure takes a symbol column, a list of columns and a list of values. It returns the
value at the same index that column appears in columns. Assume that column appears within columns.

scm> (get ’cafe ’(cafe item) ’(nefeli bagels))
nefeli
scm> (get ’item ’(cafe item) ’(nefeli bagels))
bagels

Cross out whole lines below so that get is implemented to match the examples above.

; Get an element of values by matching column to an element of columns
(define (get column columns values)
(if (equal? column (car columns))
(car values)
(get column (cdr columns) (cdr values))))

(b) (2 pt) The insert procedure takes a key, a value, and a list of groups. A group is a list that begins with
a key, followed by values. The insert procedure returns an updated list of groups with value added to the
beginning of the group for key. If key is not in groups, then a new group is added to the end.

scm> (insert ’b 5 nil)

((b 5))

scm> (insert ’a 1 (insert ’b 2 (insert ’a 3 (insert ’c 4 (insert ’b 5 nil)))))

(b 2 5) (c 4) (a1 3))

Cross out whole lines below so that insert is implemented to match the examples above.

; Insert value into the group within groups that starts with key
(define (insert key value groups)
(if (null? groups)
(list (list key value))
(if (equal? key (car (car groups)))
(cons (cons key (cons value (cdr (car groups))))
(cdr groups))
(cons (car groups)
(insert key value (cdr groups))))))

The following procedure is implemented correctly for you as a reference.

(define (map fn s) (if (null? s) s (cons (fn (car s)) (map fn (cdr s)))))

12

(c)

(d)

(3 pt) Implement from, a procedure that takes a table (e.g., cafes) and returns a list of row procedures. A
row procedure represents a row; it takes a column name and returns the value for that column in the row.

scm> (define first-row (car (from cafes))) ; first-row is a procedure
first-row

scm> (first-row ’cafe)

nefeli

scm> (first-row ’item)

espresso

You may use get, map, and list manipulation procedures such as car, cdr, cons, and list. You may only
use lambda and call expressions. No other special forms (such as if) are allowed.

(define (from table)
(map (lambda (row)
(lambda (column)
(get column (car table) row)))
(cdr table)))

The following procedure is implemented correctly for you, but you must discover its behavior and purpose.

(define (group-by column)
; Hint: rows is a list of procedures that are returmned by "from"
(define (group-all rows groups)
(if (null? rows) groups
(group-all (cdr rows) (insert ((car rows) column) (car rows) groups))))
group-all)

(3 pt) Implement select, which takes a column name and the results of calling from and group-by. It
returns a list of two-element lists, which each contain a group key and a list of column values.

scm> (select ’item (from cafes) (group-by ’cafe))
((nefeli (bagels espresso)) (fsm (espresso bagels coffee)))

scm> (select ’cafe (from cafes) (group-by ’item))
((espresso (fsm nefeli)) (bagels (fsm nefeli)) (coffee (fsm)))

You may use the map procedure, as well as list manipulation procedures such as car, cdr, cons, and 1list.
You may only use lambda and call expressions. No other special forms (such as if) are allowed.

(define (select column rows grouping)
(map (lambda (group)
(list (car group)
(map (lambda (row) (row column))
(cdr group))))
(grouping rows ’())))

