
Problem 1

a) Note that conductivity is the inverse of resistivity, σ = 1/ρ.The relationship between
the resistivity ρ and resistance R for a resistor of constant cross sectional area is given
on the equation sheet,

R = ρ
l

A
=

1

σ

l

A
.

Since the area of the wire is A = πd2/4, and replacing V = IR from Ohm’s law,

σ =
4l I

πd2V

b) Since the temperature coefficient of resistivity is negative, carbon is not a metal.

c) The magnitude of the current density~j is given in terms of the number of protons N,
the charge of each proton +e, the speed v, and the total volume of the beam V = 2πRA
by

|~j| = n e v =
N

2πRA
e v

The current I of the beam is found by integrating over a circular disc in the torus,

I =
∫
~j · d~A. Here j is parallel to d~A and constant over the circular disc so that

I = jA =
N e v

2πR
Solving for N we get the desired expression,

N =
2πRI

e v

d) Again using the relation between resistance and resistivity for a wire as in (a) we get

RAl =
ρAl L

πd2/4

RCu =
ρCuL

πd2/4

Arranging these in series gives a total (equivalent) resistance

R = RAl + RCu =
4(ρAl + ρCu)L

πd2

Finally, from Ohm’s law I = V/R we find

I =
πd2V

4(ρAl + ρCu)L



1 Problem 2

A non-conducting sphere of radius R1 is surrounded by a larger but ultrathin

spherical shell of radius R2. The volume charge density of the inner sphere is

ρ1(r) = ar(a > 0)

1.1 Part A

Calculate the surface charge density σ2 of the outer sphere such that its net
charge is twice that of the inner sphere. The total charge on the sphere is found
by integrating the charge density over the volume of the sphere.

Q1 =

∫
ρ1dV = 4π

∫
R1

0

r3dr = πaR4

1

The total charge Q2 on the shell is 2Q1.

Q2 = 2πaR4

1

The surface charge density of the shell is given by the charge on the shell
divided by the area of the shell.

Q2 = σ24πR
2

2

Solving for σ2 :

σ2 =
aR4

1

2R2

2

1.2 Part B

Calculate the electric field created at any point by this charge distribution.

Inside the sphere ((r < R1),

∫
~E · d ~A = qenc/ǫ0 =

1

ǫ0

∫
ρ1dV

Using a spherical gaussian surface, and noting the constant electric field across
the surface, and that E and da are both radially directed. This evaluates to:

~E =
ar2

4ǫ0
r̂

For a Gaussian surface between the two distributions R1 < r < R2, we again
note that ~E and d~a are both radially directed, and that |E| is constant across
the Gaussian surface. From Gauss’ law we can calculate

~E =
aR4

1

4πǫ0r2
r̂.

1



Outside the spherical shell r > R2 we know that the total charge enclosed
within a Gaussian surface is 3Q1. Using a spherical gaussian surface concentric
with the sphere and shell, we note that both the unit vector for the surface area
and the electric field are radially directed, again allowing for the simplification of∫
~E · d~a = EA. Additionally rotational symmetry demands that the magnitude

of E is constant across the Gaussian sphere.

~E =
3aR4

1

4ǫ0r2
r̂

1.3 Part C

Make a qualitative plot of the electric field as a function of the distance from
the center of the spheres.
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1.4 Part D

Set V=0 at infinity and calculate the electric potential created at any point.

Outside the shell, r > R2, the potential of this charge distribution resembles
that of a point charge with a charge of 3πaR4

1
. The potential is then given by

V (r > R2) =
3aR4

1

4ǫ0r
.

At the shell we find

V (R2) =
3aR4

1

4ǫ0R2

.

For R1 < r < R2 the electric potential of a point at radius r is given by
V (r) = V (R2) + ∆V . Again ∆V resembles a point charge:

∆V =
πaR4

1

4πǫ0r

The potential is then given by

V (R1 < r < R2) =
3aR4

1

4ǫ0R2

+
aR4

1

4ǫ0r

At r = R1

V (R1) =
3aR4

1

4ǫ0R2

+
aR4

1

4ǫ0R1

For r < R1

V (r < R1) = ∆V + V (R1).

Where

∆V =

∫
~E · d~l.

Setting d~l to be a radial path from R1 to r and plugging in the expression for
field from Part B

∆V =

∫
~E · d~l = −

∫
r

R1

ar2

4ǫ0
dr =

aR1
3

12ǫ0
−

ar3

12ǫ0

Thus

V (r < R1) =
aR1

3

12ǫ0
−

ar3

12ǫ0
+

3aR4

1

4ǫ0R2

+
aR4

1

4ǫ0R1

=
aR1

3

3ǫ0
+

3aR4

1

4ǫ0R2

−
ar3

12ǫ0
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Problem 3

a) By symmetry, the electric field should point radially outward and depend only on the

distance from the center of the spheres. In other words, we can write ~E = E(r)r̂. We
can then apply Gauss’s law using a sphere of radius r around the center of the physical
spheres as our Gaussian surface,

∮

~E · d~A = |~E|4πr2 =
qen

ǫ0

For R1 < r < R2, the enclosed charge is qen = Q and the electric field is given by

~E =
Q

4πǫ0r2
r̂

b) Integrating radially outward along d~l = r̂dr from r = R1 to r = R2

V(R2)− V(R1) = −
∫ R2

R1

(

Q

4πǫ0

1

r2
r̂

)

· rdr

=
−Q

4πǫ0

∫ R2

R1

1

r2
dr

=
Q

4πǫ0

(

1

R2
−

1

R1

)

This is a negative quantity because R2 > R1, so if we want the magnitude of the po-
tential difference we should write

V = |∆V| =
Q

4πǫ0

R2 − R1

R1R2

c) By definition,

C ≡
Q

V
=

Q
Q

4πǫ0

R2−R1
R1R2

=
4πǫ0R1R2

R2 − R1

The capacitance must be positive, so it’s good to check the sign. Since R2 > R1, this
expression is indeed positive.

d) The potential energy of a capacitor is given on the note sheet as

U =
1

2

Q2

C
We can substitute Q = CV to write this as

U =
1

2
CV2

The voltage is held constant by the battery as the dielectric is inserted. Denoting the
capacitance without the dielectric as C0, we know from the problem statement and the



definition of capacitance that the battery must have V = Q/C0. This means that when
this particular battery is hooked up to a capacitor,

U =
1

2
C

(

Q

C0

)2

Filling a capacitor completely with a dielectric increases the capacitance by a a factor
of the dielectric constant K, so C = KC0. Making this substitution gives

U =
1

2
KC0

(

Q

C0

)2

=
KQ2

2C0

Plugging in C0 from part (c) gives an expression in terms of the given parameters,

U =
KQ2

8πǫ0

R2 − R1

R1R2



(a) Call the current going through resistor R1 I1, the current going through resistor R2 I2, and the current
going through the capacitor I3. I first start by writing Kirchoff’s rules:

V0 − I1R1 − I2R2 = 0

I1 = I2 + I3

V0 − I1R1 −
Q3

C
= 0

Replacing I1 in the first equation:

V0 − I2R1 − I3R1 − I2R2 = 0

I2 =
V0 − I3R1

R1 +R2

Which gives:

V0 − I2R1 − I3R1 −
Q3

C
= 0

V0 −
V0 − I3R1

R1 +R2

R1 − I3R1 −
Q3

C
= 0

V0 −
V0R1

R1 +R2

+Q′

3
(t)

(

R2

1

R1 +R2

−R1

)

−
Q3(t)

C
= 0

V0R2

R1 +R2

−Q′

3
(t)

(

R1R2

R1 +R2

)

−
Q3(t)

C
= 0

V0

R1

−
Q3(t)

C

R1 +R2

R1R2

= Q′

3
(t)

The solution to this is on the equation sheet:

Q3(t) = V0C
R2

R1 +R2

(1− e
−

R1+R2
CR1R2

t)

Here, I used the fact that the capacitor is initially uncharged so Q3(0) = 0.

Thus, the voltage across the capacitor is:

VC(t) =
Q3(t)

C
= V0

R2

R1 +R2

(1− e
−

R1+R2
CR1R2

t)

(b) The time constant is the inverse of the factor that multiplies the exponent. Thus:

τ =
R1R2

R1 +R2

C

(c) The maximum charge is the maximum the charge function can possibly take. The function is bounded
by the prefactor, so:

Qmax = V0C
R2

R1 +R2

1



(d) When t ≪ τ, a lot of current will flow into the capacitor to charge it. This is a path of less resistance
than going through the resistor, so all current will go through the capacitor. The capacitor then has
all the current flowing through it, so it essentially acts like a wire. Thus, the equivalent circuit is just
the battery and the R1 resistor. (This can also be seen by taking the derivative of the expression in
part a)

When t ≫ τ, the capacitor will be fully charged. This means it accepts no more current, and essentially
acts like it has infinite resistance. Thus, now the path of least resistance is through the R2 resistor, so
the equivalent circuit is the battery and both the resistors.
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1 Problem 5

1.1 Part A

What are the various methods you can effectively use in this case to calculate the
electric field produced by this charge distribution on the symmetry axis (x-axis)
of the cylinder? Explain.

The electric field can be calculated through Coulombs Law. The charge
distribution may be taken to be the sum of many infinitesimal point charge
each contributing a small dE to the total field. There is not enough symmetry
in this problem to use Gauss’s Law to find the electric field.

1.2 Part B

Using Coulombs law, calculate the electric field created on the symmetry axis by
an infinitesimally thin ring of width dl carrying charge dq.

A infinitesimally thin ring of width dl with charge dq carries a surface charge
σ such that dq = σ2πRdl. A small piece of this ring creates a field

d ~E =
dq

4πǫ0
=

σ2πRdl

4πǫ0r2
r̂.

From the symmetry of the ring, it is evident that along the central axis of the
ring (in this case the x-axis), the only non-zero component of the electric field
is that which is parallel with the central axis. Specifically, for the coordinate
system defined in Figure 2, Ex is the only non-zero component of the field.
Defining θ as the angle between the vector ~r and x axis, it is clear that

Ex = |E|cos(θ),

where cosθ = x/r and r =
√
x2 +R2

The E field for a single ring above the symmetry axis is thus given by

Ex =
dq

4πǫ0
=

σ2πRdl

4πǫ0r2
cos(θ) =

σ2πRdlx

4πǫ0(x2 +R2)3/2
.

1.3 Part C

Using part (b), calculate the electric field produced by the entire charge distribu-
tion at any point M on the symmetry axis.

With the substitution x → x − l, the expression Part B can be integrated
in dl over the length of the cylinder to calculate the total field at point M at a
distance x from the origin.

Ex =

∫

dEx =

∫

dq

4πǫ0r2
cos(θ) =

∫ L

0

σRdl

2ǫ0r2
cos(θ) =

∫ L

0

σRdl

2ǫ0r2
(x− l)

r

1



Ex =

∫ L

0

σRdl

2ǫ0((x− l)2 +R2)3/2
(x− l)

Letting x− l = u and du = −dl

Ex =

∫ L

l=0

−σRudu

2ǫ0((u)2 +R2)3/2

Letting v = (u2 +R2) and dv/2 = udu

Ex =

∫ L

l=0

σRdv

4ǫ0v3/2
=

σR

2ǫ0
v−1/2

∣

∣

∣

∣

L

l=0

=
σR

2ǫ0

(

R

((x− L)2 +R2)1/2
− R

((x)2 +R2)1/2

)

Or, setting sinθ1 = R
((x−L)2+R2)1/2

and sinθ0 = R
((x)2+R2)1/2

Ex =
σ

2ǫ0
(sinθ1 − sinθ0)

1.4 Part D

What is the limit when L?? How could you get this result much more easily?
Taking the limit of an infinitely long forces the field along the interior axis to

zero. This result can be obtained through noting the symmetry of the infinite
cylinder. At any point M on the axis of the cylinder, there is an infinite amount
of charge on either side of the point, effectively canceling the Ex field component.
Mathematically, this can be observed through taking the limits limθ0→π and
limθ1→0 of

Ex =
σ

2ǫ0
(sinθ1 − sinθ0)

In which case it is clear that Ex is zero.
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