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Test # 1 MATH 53 Friday, 15" February, 2013

1.

(a) Describe the motion of a particle whose position (z(t),y(t)) at time ¢ € [0, 27] is given
by x = cost, y = sin®t. (In particular, what is the Cartesian equation of the curve?)

We notice that y = sin?t = 1 — cos?t = 1 — 22, so that the particle travels along the
parabolay =1 — 22, for -1 <2 <1 (since —1 < cost < 1 for all t).

At time ¢t = 0 the particle begins at the point (1,0), and then travels up towards the
vertex (0, 1), which it reaches at time ¢ = 7/2. It then continues to the other end of
the parabola at (—1,0), which it reaches at time ¢t = m, before turning around and
travelling across the parabola again, returning to (0,1) when ¢ = 37/2, and getting
back to the starting point (1,0) when ¢ = 2.

(b) Set up, but do not evaluate, the integral which computes the length of the curve from
part (a). How does this compare to the distance travelled by the particle?

We saw that the full length of the curve is travelled in the interval 0 < ¢ < 7, and
thus, we have

L:/ \/:E’(t)2+y’(t)2:/ Vsin? ¢ + 4 cos? t sin® ¢ dt.
0 0

This length is half of the total distance travelled by the particle.

Find the equation of the tangent line to the curve represented by the vector-valued function
r(t) = (t°,t4,¢%) at the point (1,1,1).

First, we note that the point (1,1,1) corresponds to r(1) = (1,1,1). The tangent vector
at an arbitrary point is given by r'(t) = (5t%,4¢3,3t?), and thus in particular, we have
r'(1) = (5,4, 3). The equation of the tangent line is therefore

r(s) =(1,1,1) + s(5,4, 3),

orx =1+4+5s,y=1+4s,z =1+ 3s. (Either parametric or vector form is sufficient;
the parameter s is used for the line instead of ¢ to avoid confusion, but using ¢ again is
acceptable.)
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3.

(a)

Find the equation of the line of intersection of the planes given by the equations

T—2y+3z2=-2
20 +y — 4z = 6.

Multiplying the first equation by —2 gives us —2x + 4y — 6z = 4; adding this to the
second gives by — 10z = 10. We can thus solve for y in terms of z, giving y = 2z + 2.
Plugging this back into the first equation gives us

r=—-242y—32=-24+42+4-32=2+2.

Thus, if we let z = t be our parameter, we obtain the parametric equations z =
24+t,y=2+ 2t z=1 for the line.

What is the cosine of the angle of intersection of the two planes in part (a)?

The two planes have normal vectors n; = (1,—2,3) and ny = (2,1, —4). The angle
between the planes is therefore given by

non, 2912 12
Inyfl[nzf|  VI+4+9V4+T+16  V14V21

(You can simplify the answer further, but it’s not necessary.)

cosf =

What is the distance from the plane x — 2y 4+ 3z = —2 to the point (3, —1,4)7

Assuming that you didn’t bother to fill your brain with unnecessary distance formulas,
we proceed as follows: we know that the point (2,2,0) is on the plane from part (a),
and thus a vector from the plane to the point isa = (3—2,—-1—-2,4—0) = (1,-3,4).
The distance is then given by the length of the normal component of this vector; that
is,

la-ng| [14+6+12] 19
[l || Vi+t4d+9 14

d = |comp,, a| =
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[7] 4. Find the area of the triangle APQR, for points P(0,0,0), Q(1,2,—1), R(—2,3,2).

1
The area of the triangle is given by A = 5”]@ X ﬁ“ We have ]@ = (1,2,—1) and
ﬁ = (—2,3,2), which gives us

~

@xﬁ: 1

—2

H

—1| = (7,0, 7).

W NGOy

1
The area is thus A = §||<7,0, N =—.

NE

5. Let a, b, c be nonzero vectors in R3. For each of the following, prove the statement, or
6] give an example showing that the statement is false:

(a) Ifa-b=a-c, then b=c.
(b) If ax b=axc, thenb =c.

(¢c) fa-b=a-candaxb=axc, thenb=c.

For part (a),leta= %, b= j, and c = k. Thena-b=a-c=0, but j# k, so the
statement is false.
For part (b), leta= %, b= %, and ¢ =2% Thenc # b,butaxb =axc =0, so
the statement is false.
For part (c), suppose that a x b = a x c. Since the cross product is distributive, this
implies that a x (b —c¢) = 0, which tells us that b — ¢ = ka for some scalar k. (Either
b =c, so k =0, or a is parallel to b — c.) If we also have that a-b = a - ¢, then it
follows that

0=a-(b—c)=a-(ka)=klal?

Since a # 0, we must have k£ = 0, and thus b = c.
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List of potentially useful formulas and facts:

In the following, assume a = (ay, as, as) and b = (by, by, b3) are constant vectors in R3, and
r(t) = (z(t),y(t), z(t)) is a vector-valued function with domain [a, b].

Length of a vector: ||a|| = \/a? + a3 + a3

Dot product: a«b = a1b; + axby + asbs = ||a|| ||b]| cos 6

Cross product: a x b = (asbs — agbs, asby — a1bs, a1bs — asby); ||a x b|| = ||a|| ||b]| sin 6.

-b -b
Projections: proj, b = aro (i), comp, b = a_'
lall \lla] lall

Planes: ax +by+cz=d,orn-(r—ry) =0.
Lines: v =xog+at, y =yo+ bt, 2 =2y +ct,orr =15+ tV.

Quadric surfaces: there aren’t any on the midterm, so you can relax and play with some
vectors.

b
Parametric area: A = — / y(t)2'(t) dt for a positively-oriented curve.
Tangent vectors: For each ¢y € [a,b], r(t) has tangent vector r'(¢y) = (2'(to), v (to), 2’ (t0))-

b
Parametric length: L = / |2/ (t)]] dt.

List of basic facts I hope were in fact entirely unnecessary to include:

sin? @ + cos?26 = 1

—(t") = nt"* 4 sint = cost 4 cost = —sint
dt T dt T dt

d

5 (g(t) = Ft)g(t) + f()g'(t)
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