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1. For parts (a)-(c), let f(x, y, z) = x3 sin(yz).

(a) Compute the gradient of f . [3]

∇f(x, y, z) =

〈
∂f

∂x
(x, y, z),

∂f

∂y
(x, y, z),

∂f

∂z
(x, y, z)

〉
=
〈
3x2 sin(yz), x3z cos(yz), x3y cos(yz)

〉
(b) Compute the directional derivative of f at the point (2, 1, 0), in the direction of

v = 〈−2, 1, 2〉. [3]

The gradient of f at (2, 1, 0) is ∇f(2, 1, 0) = 〈0, 0, 8〉, so

Dvf(2, 1, 0) =
∇f(2, 1, 0) · v

‖v‖
=

16

3
.

(c) Compute
∂f

∂u
and

∂f

∂v
if x = u2, y = v2, and z = u + v. Your answer should be [6]

entirely in terms of u and v but does not have to be simplified.

∂f

∂u
=
∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u
+
∂f

∂z

∂z

∂u

= 3(u2)2 sin(v2(u+ v))(2u) + 0 + (u2)3(v2) cos(v2(u+ v))(1)

∂f

∂v
=
∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v
+
∂f

∂z

∂z

∂v

= 0 + (u2)3(u+ v) cos(v2(u+ v))(2v) + (u2)3(v2) cos(v2(u+ v))(1)
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2. (a) What is the geometric meaning of the Lagrange multiplier equations
∇f(x, y) = λ∇g(x, y)? [3]

The level curve f(x, y) = c, where c is the maximum or minimum of f(x, y) subject
to the constraint g(x, y) = k is tangent to the constraint curve g(x, y) = k at their
point of intersection, since the normal vectors to the two curves are parallel.

(b) Find the maximum and minimum of f(x, y) = x2 − y2 subject to the constraint
x2/9 + y2/4 = 1. [7]

The Lagrange multiplier equations give

∇f(x, y) = 〈2x,−2y〉 = λ〈2x/9, y/2〉 = λg(x, y).

Equating x components gives x = λx/9, so either x = 0 or λ = 9. If x = 0 then
the constraint equation gives y = ±2 and f(0,±2) = −4.

If λ = 9 then −2y = 9y/2, which implies that y = 0, and the constraint equation
gives x = ±3.

Since f(±3, 0) = 9, this must be the maximum of f , while f(0,±2) is the mini-
mum.

(c) Show how your answer from (b) illustrates part (a) by sketching the constraint
curve from (b), along with a contour plot of f that includes the level curves
corresponding to the maximum and minimum values. [4]

Page 3 of 9 Total Marks: 100



Date: May 15th, 2013 Time: 3:00-6:00 pm MATH 53

3. Evaluate the following double integrals by either reversing the order of integration, or
converting to polar coordinates.

(a)

∫ 4

0

∫ 2

√
x

1

y3 + 1
dy dx [6]

The region of integration is given as a Type I by 0 ≤ x ≤ 4 and
√
x ≤ y ≤ 2.

As a Type II region, this is equivalent to 0 ≤ x ≤ y2 and 0 ≤ y ≤ 2. (A sketch
is recommended but not required if the limits are changed correctly. It’s omitted
here due to the annoyingness of producing it electronically.) Therefore, we have∫ 4

0

∫ 2

√
x

1

y3 + 1
dy dx =

∫ 2

0

∫ y2

0

1

y3 + 1
dx dy

=

∫ 2

0

y2

y3 + 1
dy

=
1

3

∫ 9

1

1

u
du (withu = y3 + 1)

=
ln 9

3
.

(b)

∫ 1

0

∫ √2−y2

y

(x+ y) dx dy [6]

The region of integration lies within the circle x2 + y2 = 2, above the x-axis, and
below the line y = x, which intersects the circle at the point (1, 1). (Again, sketch
omitted for the same reasons; give a point if it’s there, but don’t deduct if there’s
no sketch but the conversion is done correctly.) In polar coordinates this region
is described by 0 ≤ r ≤

√
2 and 0 ≤ θ ≤ π/4, so we have∫ 1

0

∫ √2−y2

y

(x+ y) dx dy =

∫ π/4

0

∫ √2
0

(r cos θ + r sin θ)r dr dθ

=

∫ π/4

0

2
√

2

3
(cos θ + sin θ) dθ

=
2
√

2

3
(1/
√

2− 0− (1/
√

2− 1))

=
2
√

2

3
.
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4. (a) Find the equation of the tangent line to the curve of intersection of the paraboloid
x = y2 + z2 with the ellipsoid x2 + 4y2 + z2 = 9 at the point (2, 1, 1). [6]

Hint: You don’t need to find the curve itself in order to determine the tangent
line.

Since the curve of intersection lies in both surfaces, its tangent vector at (2, 1, 1)
must lie in the tangent planes to both surfaces at that point. Let f(x, y, z) =
x − y2 − z2 and let g(x, y, z) = x2 + 4y2 + z2. The paraboloid is then given by
f(x, y, z) = 0 and the ellipsoid by g(x, y, z) = 9, so the tangent plane to the
paraboloid at (2, 1, 1) has normal vector

∇f(2, 1, 1) = 〈1,−2,−2〉,

and the tangent plane to the ellipsoid at (2, 1, 1) has normal vector

∇g(2, 1, 1) = 〈4, 8, 2〉.

The tangent vector to the curve must be orthogonal to both normal vectors, so
we can take

~v = ∇f(2, 1, 1)×∇g(2, 1, 1) = 〈12,−10, 16〉,

and thus, the line is given by

〈x, y, z〉 = 〈2, 1, 1〉+ t〈12,−10, 16〉,

for t ∈ R.

(b) Let C denote the set of points in the intersection of two smooth level surfaces
f(x, y, z) = c and g(x, y, z) = d. In general, C may not be a smooth curve. [6]

What condition on f and g (or the corresponding surfaces) will guarantee that C
is a smooth curve?

Based on our solution to part (a), we note that a smooth curve must have a
tangent line approximation at all points, and thus must have a non-zero tangent
vector at all points. One way of guaranteeing this is to require that

∇f(x, y, z)×∇g(x, y, z) 6= 0

for all (x, y, z) ∈ C; in other words, the two normal vectors cannot be paral-
lel. In terms of the surfaces, this is the requirement that there are no points of
intersection where the two surfaces are tangent to each other.
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5. Evaluate the integral

∫∫
D

xy dA, where D is the region in the first quadrant bounded

by the circles x2 + y2 = 4 and x2 + y2 = 9, and the hyperbolas x2 − y2 = 1 and
x2 − y2 = 4. [12]

Hint: Use an appropriate change of variables. You might find it especially convenient
in this problem to use the fact that the Jacobians for a transformation and its inverse

are related by JT (u, v) =
1

JT−1(x(u, v), y(u, v))
.

The region D is given by 4 ≤ x2 + y2 ≤ 9 and 1 ≤ x2 − y2 ≤ 4 (again, a sketch is
worth points but not required if the remainder of the problem is done correctly), so
we let u = x2 + y2 and v = x2 − y2. The region D is then the image of the rectangle
R = [4, 9]× [1, 4] under the transformation T whose inverse is given by

T−1(x, y) = (x2 + y2, x2 − y2) = (u(x, y), v(x, y)).

The Jacobian of the inverse transformation is

JT−1(x, y) = det

(
ux uy
vx vy

)
= det

(
2x 2y
2x −2y

)
= −8xy.

Thus,

JT (u, v) =
1

JT−1(x(u, v), y(u, v))
=

−1

4x(u, v)y(u, v)
,

and so the change of variables formula gives us∫∫
D

xy dA =

∫ 4

1

∫ 9

4

x(u, v)y(u, v)

∣∣∣∣ −1

4x(u, v)y(u, v)

∣∣∣∣ du dv =
1

4

∫ 4

1

∫ 9

4

du dv =
15

8
.

A correct solution that involves solving for x and y in terms of u and v is also acceptable
(but quite a bit more complicated).
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6. Let f(x, y, z) be a continuously differentiable function, and let F(x, y, z) be a continu-
ously differentiable vector field.

(a) Show that ∇(fn) = nfn−1∇f . (Here fn denotes f raised to the power of n.) [5]

We have ∂
∂x

(f(x, y, z)n) = nf(x, y, z)n−1 ∂f
∂x

(x, y, z), with similar results for y and
z, so

∇(fn) = 〈nfn−1∂f
∂x
, nfn−1

∂f

∂y
, nfn−1

∂f

∂z
〉 = nfn−1∇f.

(b) Show that ∇ · (fF) = ∇f · F + f∇ · F. [5]

Let F = 〈P,Q,R〉, so that fF = 〈fP, fQ, fR〉. We then have

∇ · (fF) =
∂fP

∂x
+
∂fQ

∂y
+
∂fR

∂z

= fxP + fPx + fyQ+ fQy + fzR + fRz

= 〈fx, fy, fz〉 · 〈P,Q,R〉+ f(Px +Qy +Rz)

= ∇f · F + f∇ · F.

(c) Show that ∇ · (ρnr) = (n + 3)ρn, where r(x, y, z) = 〈x, y, z〉 and ρ(x, y, z) =√
x2 + y2 + z2 = ‖r(x, y, z)‖. [4]

Since ρ = (x2 + y2 + z2)1/2, we have

∇ρ =
1

2
(x2 + y2 + z2)−1/2〈2x, 2y, 2z〉 =

1

ρ
r.

Thus, making use of parts (a) and (b), we have

∇ · (ρnr) = nρn−1∇ρ · r + ρn∇ · 〈x, y, z〉
= nρn−2r · r + ρn(1 + 1 + 1)

= nρn + 3ρn = (n+ 3)ρn,

since r · r = ρ2.
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7. Let E be the region in R3 bounded by the sphere S given by x2 +y2 + z2 = R2, and let
F be the vector field defined in problem 6(c), for n ≥ 0. Verify the Divergence Theorem
by computing both

∫∫
S
F · dS and

∫∫∫
E

(∇ ·F) dV and confirming that they’re equal. [12]

On the sphere S given by x2 + y2 + z2 = R2 we know that the outward-pointing unit
normal vector is

n(x, y, z) =
1

R
〈x, y, z〉 =

r

R
.

Also, on S, since ρ = R is constant, we have F = Rnr. Thus, we have∫∫
S

F · dS =

∫∫
S

(F · n) dS =

∫∫
S

Rnr ·
( r

R

)
dS = Rn+1

∫∫
S

dS = 4πRn+3,

since r · r = x2 + y2 + z2 = R2 on S, and the area of a sphere is given by 4πR2.

On the other hand, we know from 6(c) that the divergence of F is given by ∇F =
(n + 3)ρn, and in spherical coordinates E is given by 0 ≤ ρ ≤ R, 0 ≤ φ ≤ π and
0 ≤ θ ≤ 2π, so we have∫∫∫

E

(∇·F) dV =

∫ 2π

0

∫ π

0

∫ R

0

[(n+3)ρn]ρ2 sinφ dρ dφ dθ = 4π
(n+ 3)ρn+3

n+ 3

∣∣∣∣R
0

= 4πRn+3,

as before. Thus, the Divergence Theorem is verified.
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8. A hot air balloon known as the TARDIS (for Tethered Aerial Release Developed In
Style) has the shape of the surface S given by the part of ellipsoid 2x2 + 2y2 + z2 = 9
with −1 ≤ z ≤ 3. The hot gases that the balloon uses to fly have a velocity vector
field given by v = ∇× F, where F(x, y, z) = 〈−y, x, xy + z2〉. The rate at which the
gases escape from the balloon is equal to the flux of v across the surface of the balloon,

given by

∫∫
S

v · dS, where S is given the outward orientation (away from the z-axis).

Sketch the surface∗, and then use Stokes’ Theorem to calculate the rate at which the
gases escape from the balloon. [12]

The boundary of the ellipsoid is the circle C given by x2+y2 = 4, with z = −1. Since S
is oriented outward, the positively-oriented boundary is given by the counter-clockwise
orientation of C. We can either apply Stokes’ Theorem directly, and compute

∫
C
F· dr,

or use Stokes’ Theorem a second time and compute
∫∫

D
(∇×F) · k̂ dA, where D is the

disk x2 + y2 ≤ 4, z = −1.

With the first approach we let r(t) = 〈2 cos t, 2 sin t,−1〉, so that r′(t) = 〈−2 sin t, 2 cos t, 0〉,
with t ∈ [0, 2π]. We then have∫

C

F · dr =

∫ 2π

0

〈−2 sin t, 2 cos t, 4 sin t cos t+ 1〉 · 〈−2 sin t, 2 cos t, 0〉 dt

=

∫ 2π

0

(4 cos2 t+ 4 sin2 t) dt

=

∫ 2π

0

4 dt = 8π.

Alternatively, we compute that v = ∇× F = 〈x,−y, 2〉, so that∫∫
S

v · dr =

∫∫
D

v · k̂ dA =

∫∫
D

(2) dA = 2π(22) = 8π.

(Either solution is acceptable.)

∗If you can’t figure out how to do the problem, I’ll award 3/12 for a correct sketch of the surface S,
together with the basket underneath and at least one person inside.
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