Physics 7B, Speliotopoulos
Final Exam, Spring 2014
Berkeley, CA

Problem 1

Consider particle on the left with charge ql > 0. First calculate the
magnetic and electric force on the particle
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So F_B points to the left, F_E points to the right. in order for the velocity
to remain constant the net force must be zero.
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Solving for the separation distance.
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Instead consider the particle on the right with charge g2 < 0. The
electric force (now pointing to the left) must cancel the magnetic force
(now pointing to the right). Repeating the previous arguments:
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So the charge q1=&q2\



Problem 2

The Biot-Savart law can be used to calculate the field at O.
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The contribution to the magnetic field from each of the straight
segments of the wire is zero.
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For the circular segment:
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From the definition of the cross product (RHR) the field points into the
page with magnitude:
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1 The Flux Loop Method

To do this problem by making a flux loop we must first recall what a flux loop is. The loop corresponds to
the loop on which we evaluate the Maxwell Equation:
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We are dealing with Ohmic currents so E o« J. Thus the loop must make sense as a current loop. In
particular we wish to choose rectangular loops along a radial crosssection of the cylinder ({# = 0}) parallel
to the cylindrical axis and we must choose them so that all edges have the same current. Because these are
space curents we will need to calculate the contribution of each current loop, weighted by the weight of its
current, and sum them together.

Look at the following rectangular cross-section of the cylinder: {# =0, b > r > 0}. The currents of the
inner and outer cylinders are the same but the densities are not! In particular,
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The B-field is:
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Construct a rectangular loop of length [ with radial edges at 0 < r1 < a and a < ro < b it must have some
current call it ¢. Unfortunately it does not follow that ® = L.! If this were true, as you can see below, the
inductance would not be well-defined. It cannot depend on the loop. We will need to use, ® = LI. The flux
per length through the loop we built is:
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If we simply take the loop that has 1 = 0 and 5 = b (and declare falsly that it has current I) we get:
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This is wrong! To get the correct answer we must include all possible loops of current in the inductor. We
need to relate ¢ to the densities inside/outside and then sum contributions from all possible loops. This
means varying r; over all of their possible values independantly (integrating). In particular the weighting
should be such that after adding all the currents we use a total current of I and the fraction at any point
must match in both sides of the loop. Thus the weight is:
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This should look familliar as the weight associated to the density J. So we write the total flux essentially as
a weighted sum so that each configuration of r; is weighted such that the currents in both sides of the loop
match:
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So,
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2 The Energy Method

Calculate the total energy in a section of the tube. Using the B-fields above,
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# 4 Solution and Rubric

1 Solution

1.1 Part A
Use Ohm'’s law: J = oE = %E. If E is going to be constant everywhere then it must be that, E = Ey by

spherical symmetry and J = % (%)5 7. Now, suppose that we calculate the total current flowing through a
sphere (outward!), it must be constant on any sphere because there are no sources of current between radii
a and b. (We are not including the wire carrying current in to the sphere in this calculation.) The spherical

normal vector is in the direction of J so,
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1.2 Part B

To calculate the current in the circuit we can simply use the result above. When s = 2 then I = [ J - da =
47ra2% It remains to compute the electric field. Given that we know that the field is constant and radial
we can integrate along a radial path and relate this to the potential:
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If you use s = 3 then the solution is different. In this case it makes more sense to calculate the resistance
using R = p% or,
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Thus,

2 Rubric

Grading will be based on a demonstration of comprehension of the formulas and physical concepts. Little
or no credit is given for quotation of formulas, mainly because they are on the equation sheet, you need
to show that you understand something. The grading is roughly divided into the following rubric with the
caveat that any missing vectors on fields, unit errors, and other errors incur penalties at the discretion of
the grader. Below is a set of guidelines for how the problem was graded.



2.1 Part A (8pts)
Things that get 0 pts:
1. Not predicting a value of s

2. Treating p as a charge density. This is very serious because it shows that you don’t understand what
p is.
3. Claiming that R = [ pdV. Also shows that you don’t understand the units or definition of p.
Things that incur major penalties (—2 to —6):
1. Saying that V' should be constant in space. This means E = 0!!

2. Failure to understand the geometry. Incorrect area through which the current flows or incorrect lengths
in the resistance formula.

3. Failure to justify the choice of s. There are degrees of wrongness here and it depends on whether you
made a slight calculation error or did not show that the choice of s really made E constant.

4. Random false statements on the page. Many students wrote things down that are simply false physically
and/or mathematically that may not have contributed to getting the answer but were not crossed out.

Things that incur minor penalties (= —2):
1. Unit errors (unless they are due to something above)
2. Missing constants on areas, specifically the area of a sphere is 4mr2.

The points above are described as flexible because it really depends on whether you know what you are
doing. In some cases the errors above are minor but the student gets the wrong s, in other cases the errors
are clearly due to a lack of understanding of fundamentals.

Fianlly, Gauss’s Law is useless here. If you take a sphere around the sphere the enclosed charge is identaically
0! The electric field in this problem is Ohmic and cannot be calculatd with Gauss law because it is not from
free charge in the typical sense.

2.2 Part B (12pts)

You can get full points here if you use a current calclated in part A and note that V = f::; Eyr - fdr =
(b—a)Ey. You may loose a few points though if the answer is not dinensionally sound. Instead you can also
do the calculation of R. For this,

10 pts for setting up the integral with correct limits and Jacobian and cross sectional area etc.
2 pt for integrating correctly
Things that get 0 pts:
1. Leaving tha final current dependant on r! This make no sense physically and it is a grave error.

2. Not treating p as continouus.

3. Claiming that R = [ pdV



Question 5

(a)

First consider a single sheet of current with current flowing in the ¢ direction (i.e. the sheet
on the right with current flowing into page in the side view). For convenience, we first reset
the coordinate such that this sheet coincides with the y-z plane.

By translation symmetry along the y and 2z axes, we know that the magnetic field cannot
depends on the y and z coordinates, i.e.

B(w,y,z) = B(x) (1)

Therefore, WLOG we can consider a point on the x axis at a distance xqg > 0 away from
the sheet. Now note that we can slice up the sheet and view it as a collection of differential
infinite wires running along the y axis. Each such “wire” is labeled by its z coordinate. By
cylindrical symmetry, we know that the magnetic field of an infinite wire circulates around
the wire. Hence, the magnetic field due to the two differential wires at z = =£|zy| will (1)
have no y component; (2) cancel each other in the x direction, and (3) add up in the z
direction. Therefore, we know by symmetry that

B(z) = B.(2)2. (2)

Now we consider the original system with two sheets at x = +d with currents flowing in
the +y directions. By superposition, we see that the total field of the system still has the
form of Eq.[2]. Due to the high symmetry in the problem, we can consider a rectangular
Amperian loop defined by

C: (20,0,1/2) Y (24,0,1/2) H (24,0, -1/2) ¥ (20,0, —1/2) Y (20,0,1/2) (3)

where [ > 0, |zo| < d, and the x-coordinate 2d was arbitrarily chosen: all we need is that
the leg is outside of the region bounded by the sheets. As such we have

féé-df:/le(x)[é-i]dx+/23z(x)[2 - (—2)]dz+/Bz(x)[2 - (—i)]dm+/Bz(x)[2-é]dz

=0+ B.(2d)l 4+ 0 + B.(x)l 3 '
=B, (x)l
(4)

where we have used the given fact that B (2d) = 0.

The direction of the Amperian loop, defined via right hand rule, is . Since the current
is also flowing in the 4y direction, we have

NOIenc = [I,OKZ >0 (5)



By Ampere’s law, we then have
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(b)

By Faraday’s Law
- - ddp
E-dl=——
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Comparing with Ampere’s law in Eq.[6], we see that they are mathematically identical if we
identify
ddp

e (5)

B+ E & o lene <>

and hence the symmetry arguments we had for finding B using Ampere’s law also apply for
finding E using Faraday’s law. In particular, it follows from part (a) that for a single sheet
of current with current density K = K¢ we have B(z) = B.(z)%. Here we have a d®p/dt
that “flows” in the z direction, and by the correspondence in Eq.[7] we know that

—

E = E,(r)j (9)
and in addition by rotation symmetry along the z axis we also have
Ey(r) = —E,(—x) (10)

Now consider an “Amperian” loop with xy,l > 0:

C' (—0,1/2,0) S (20,1/2,0) B (20, —1/2,0) &Y (=, —1/2,0) W (=, 1/2,0)  (11)

which gives

B~ [ Bl dldet [ Bl Coldy+ [ Bl olde+ [ Bl ldy

3/
:O — Ey(l’())l + 0 + Ey(—l'())l
= — 2Ey(£lf0>l
(12)



note that the direction of the loop is —Z. The magnetic flux through C’ is then

v =] 5
/ —dA2)

—uoK12xy for zy<d
—uoK12d  for xg>d
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this gives

d@B pol2zo (dK/dt) for xy<d
pol2d (dK/dt)  for xy>d

where we have

Faraday’s law then gives

P —sign(x)puoKo |z|/Ty for |z| <d
—sign(x)pugKod/Ty for |z|>d

note also how the direction of F is determined by Lenz’s law.

(13)

(14)

(16)



@ As Curcen) 1 passe s -%mugh the
red, there will be o fovce M-\in% on
ik by the Magnehe Yield a the
-x direchion (delermined by RHR2
(dF= 1dfxa ) . Fm= 1003

= (@) A e nd moves Yo dne ety whe

magnehe Fux thaugh Yae acca enciosed
by e rails and rod decrease S |, Mesu Haey

0 an induced emb in e rod cppesng

nis change 1 Plun. (direchon of this

— Wduced em¥ (€1 )1 shown 10 the diagram.)
SP . d(8M) 4 dA _ ppdx _ g9 vuy Noke: V(4)

2/
e gaﬁl N ¢ lr_'e'_r":”_.
MR MR
=t 3 "’e"iﬂ;‘t A
v(it) = % (\_e = ) (- )

_.-.;—_)__ at tis point, e nduced emf eq uals the
Boiery votaqe and no more et passes

).('l\r.ms\n the areut. tFM -8 -O , No net
forCe onthe ral aod ¥ne ca\ orhnues Yo move @

a cnstant velou vy Wifgq (%)

- cit dt "\ -2 dircchon -
€L =0
v@@) =0 \

Ll R T TR R T

- # et gy
et A 1l N Skt



Problem 7 (20 pts)

a) (7 pts)

(5 pts) Use the definition of entropy, the given relation of dQ = 1/2dE and the definition of internal energy to find an

integrable expression for dS.

45— 9Q _ dE _ 3/20RdT
T 2T 2T

(1 pt) Integrating that expression from point a to point b
Ty 3
AS = / ds = / fnR—

3 Ty
AS = 4ann (Ta)

(1 pt) Correct final answer

b) Method 1 (13 pts)

(5 pts) Use the first law, the given relation of d@) = 1/2dE and the definition of internal energy to find an expression between
P,Vand T

dE = — PdV + dQ
= — PdV + dE/2
dE/2 = — PdV

%anT =—PdV

(1 pt) Integrating the left hand side from a to b

T 3 3
/ —nRAT = —nR(Ty — Ty)
7, 4 4

(2 pts) Assuming the equation of state (EOS) PV# =const., writen down P(V)

PVP =P VP
| %5
P(V) =Puif5
(2 pts) Use this to integrate the right hand side
T |75 PVE
| Pdv =-— P SedV = - (VT -y
A n v =gl
(2 pts) Write this in terms of solely T'
—/ PdV = — ——(P,VPV,} P — P, V)
T, 1-8
- ﬁ(pbvﬁv*l* —P,V,) since P,VP = BV
1
= - P, Pa a
1= 5( wVo — PaVa)
1
=—7= ﬂ(nRTb —nRT,)
nR
_ T, - T,
. ﬂ( b —Ta)



(1 pt) Get S8 by comparing the left and the right
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b) Method 2 (13 pts)
(5 pts) Use the first law, the given relation of d@Q = 1/2dE and the definition of internal energy to find an expression between

P,Vand T
dE = — PdV +dQ
= — PdV +dE/2
dE/2 = — PdV

ZanT =—PdV

(3 pt) Use ideal gas law to eliminate P and arrive at an integrable expression

3 nRT

ZanT =— ?dV
3 dT nRdAV
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(1 pts) Integrating both sides
3 /Tb ar /Vb av
4 ), T Jy, V
B (B o (X
4 \T,) T \Va
(2 pts) Show a relation that is constant along the process
B () o (X
4 \T,) \Va
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(1 pts) Rewrite this in terms of P and V

(1 pt) Correct final answer

T—3/4
=const.

pPV)—8/4
(+ =const.’

P3/4y=T/4 —const.!
PV7/3 —const.”



