
Problem 1

At the final temperature T (in Kelvin), the new length for the aluminium rod is

L′

Al = LAl(1 + αAl(T − 373K)).

Similarly, the new diameter for the hole on the steel plate is

L′

Fe = LFe(1 + αFe(T − 293K)).

For the rod to fall through the hole, the critical T is given by L′

Al
= L′

Fe
, or

LAl

LFe

(1 + αAl(T − 373)) = 1 + αFe(T − 293)

LAl

LFe

(1− 373αAl)− 1 + 293αFe = T

(

αFe − αAl

LAl

LFe

)

T = −13K.

This is clearly impossible since temperatures cannot go below absolute zero. Indeed the approximation of
linear thermal expansion for the two materials fails for such a big range of temperature change.

Problem 2

Part a

Since the fastest pN = 0.1 fraction of the gas carries pE = 0.28 of the total energy, given the initial genergy
of the gas E0 = N(3/2)kBT0, the energy left after the evaporative cooling is

E1 = E0(1− pE) = (1− pE)N(3/2)kBT0.

Part b

After the gas has returned to thermal equalibrium, the total energy E1 of the gas has to be conserved, which
means E1 = N1(3/2)kBT1, where N1 = N0(1− pN ). Using part a we can solve for T1 as

T1 =
(1− pE)N(3/2)kBT0

(1− pN )N(3/2)kB

= T0

1− pE
1− pN

= 0.8T0.

Part c

pN and pE are a basic property of a Maxwell – Boltzmann distribution. Once the gas has come back
to thermal equilibrium after the first cooling cycle, we can repeat the same procedure to attain the same
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fractional decrease of temperature, assuming the same fraction of the fastest particles is siphoned off. This
means T2 = 0.8T1, T3 = 0.8T2, etc. After a cycles, the final temperature is Ta = 0.8aT0. Requiring this to
be T0/2, we have

T0/2 = 0.8aT0

log(0.5) = log(0.8a)

log(0.5) = a log(0.8)

a =
log(0.5)

log(0.8)
= 3.1.

This means at least 4 cycles are required.
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Problem 3

Call the equilibrium temperature of the system Tf . The piston will press down on the system, so this
will be an isobaric process. Consider the heat released by the water during its cooling:

Qwater = nvCP (TV − 373.15K) +mvLvapor +mvcwater(373.15K − Tf )

= 4nvR(TV − 373.15K) +mvLvapor +mvcwater(373.15K − Tf )

By conservation of energy, this heat will be absorbed by the diatomic gas.

Qgas = Qwater = ngasCP (Tf − Tg) =
7

2

P0V0

RTg

R(Tf − Tg) =
7

2

P0V0

Tg

(Tf − Tg)

Now solve for Tf :

4nvR(TV − 373.15K) +mvLvapor +mvcwater373.15K +
7

2

P0V0

Tg

Tg = (mvcwater +
7

2

P0V0

Tg

)Tf

Tf =
4nvR(TV − 373.15K) +mvLvapor +mvcwater373.15K + 7

2

P0V0

Tg

Tg

mvcwater +
7

2

P0V0

Tg

Now use ideal gas law to find the final volume:

V =
NkBTf

P0

=
P0V0Tf

P0Tg

= V0

Tf

Tg

= V0

4nvR(TV − 373.15K) +mvLvapor +mvcwater373.15K + 7

2
P0V0

mvcwaterTg +
7

2
P0V0
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#4
(1) Clearly CD and DA are isothermal, being at const T . The other two must be adiabatic because

there is no entropy change so there cannot be heat flow. To see this, it is clearly not isothermal (by
the diagram) and for isobaric and isovolumetric process there is heat transfer equal to Cp∆T and
Cv∆T respectively.

(2) The net work done in the cycle can be found by using the first law and calculating the net heat
transferred. By the first law we know that ∆Unet = Qnet −Wnet where I will take the path to be
the entire cycle. In that case ∆U = 0 because it is a state function. The total heat transferred is
given by the heats transferred on the isotherms. On an isotherm in general, ∆Siso = Q

T
. So we find

that the net work done is

Wnet = Qnet = QH −QL = ∆STH −∆STL = ∆S∆T = (Sa − Sb)(Tc − Tb)

(3) By definition e = W
QH

= ∆S∆T
∆STH

= Tc−Tb

Tc

= 1− Tb

Tc

. As expected.
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#5
(1) The flow rate must be constant so that the flux of heat into any closed volume is 0. Otherwise there

is a net increase in the heat inside the closed volume and the temperature of the volume will increase.
This contradicts the steady-state hypothesis. In the case of changing temperatures the steady state
heat equation does not apply, we should solve ut = ∆u.

(2) Apply the conduction equation on the radial coordinate. Then the area becomes that of a sphere of
radius r and we have:

Q̇ = −k(4πr2)
dT

dr
Let us assume that the heat flow rate is constant, because the system is in steady state. Then
integrating the equation yields:

∫ Rs

Rc

Q̇
dr

4πr2
=

∫ Ts

Tc

−kdT

Q̇
1

4π

(

1

Rc

−

1

Rs

)

= −k(Ts − Tc)

Q̇ =
−4πk(Ts − Tc)
(

1
Rc

−
1
Rs

) = 1.74561× 1011W

(3) To get this we just stop the integration early,
∫ r

Rc

Q̇
dr

4πr2
=

∫ T (r)

Tc

−kdT

Q̇
1

4π

(

1

Rc

−

1

r

)

= −k(T (r)− Tc)

So,

T (r) =
−Q̇

4πk

(

1

Rc

−

1

r

)

+ Tc

The signs in both parts make sense because heat should flow outward to the colder surface.
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