Solutions to final for MATH 53, professor Agol
December 18, 2014

1. (a) Let L be a line passing through the points ¢ and R, and let P be a point not on
the line L. Show that the distance d from the point P to the line L is
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where a = QR and b = QP.

Solution: Let S = @ +a+ b. Then PQRS is the parallelogram spanned by a
and b, which has area |a x b| by a property of the cross product. On the other
hand, this parallelogram has area base x height = |a|d, where d is the distance
between P and the line L. So we get
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(b) Draw a figure and label it to illustrate your answer, showing P,Q, R, L,a,b,axb
and a segment of length d.

Solution:

axb S

(c) Use the formula in part (a) to find the distance d from the point P(1,9,12) to
the line L through Q(0,6,8) and R(—1,4,6).

Solution:
Wehavea=QR=R—Q =(—-1-0,4—6,6—8) = (—1,—2,—-2), and b= QP =
P—Q=(1-0,9-6,12—8) = (1,3,4). So |a| = \/(—1)2 + (=2)% + (—2)2 = 3.

i j k
axb=| -1 —2 —2|=(=24—(—2)-3)i+(—21—(—1)-4)j+(—1-3—(=2)-1)k = —2i+2j+k.
1 3 4

So |ax b|=3,and d = |a x b|/|]a]| =3/3 = 1.



2.

3.

4.

d.

(a) Find an equation for the plane consisting of all points that are equidistant from
the points (2,5,5) and (—6,3,1).
Solution: The plane is perpendicular to the midpoint of the line segment con-
necting the two points. We compute the midpoint $((2,5,5) + (—6,3,1)) =
(—2,4,3), which is a point lying on the plane. A perpendicular vector is given
by (2,5,5) — (—=2,4,3) = (4,1,2). Thus, we get the equation 4z + y + 2z =
(4,1,2) - (—2,4,3) = 2.

(b) Sketch a picture illustrating your answer to part (a).
Let r(t) = (1 + cost,2 + sint).

(a) Sketch the plane curve with the vector equation [Hint: find an equation satisfied
by the curve].
Solution: The unit circle (z — 1)* + (y — 2)? = 1 centered at (1, 2).

(b) Find r'(¢).
Solution: We have r/(t) = ((1 + cost)’, (2 + sint)’) = (—sint, cost).

(c) Sketch the position vector r(t) and the tangent vector r'(t) for ¢t = 7/6.
Solution: r(7/6) = (1 ++/3/2,2+ 1), r'(1/6) = (-1, 3).
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Find the local maximum and minimum values and saddle point(s) of the function.
flz,y) = 2 — 122y + 8y°.

Solution: We set the gradient Vf = (3z% — 12y, —12z + 24y*) = (0,0) to find the

critical points. So 322 — 12y = 0, —12x + 24y?> = 0, and therefore we have 2? =

4y, x = 2y2. Substituting, we get 4y = (2y?)? = 4y*, so y* = y, which holds only when
=1,y=0.

If y =0, then x = 0, and we have the critical point (0,0). If y = 1, then = = 2, and

we have the critical point (2, 1).

We also compute f,, = —12, f4, = 62, f,, = 48y, and D = fo.fyy — fy = 288xy —

(—12)? = 144(2zy — 1).

Then D(0,0) = —144 < 0, so f(0,0) = 0 is a saddle point.

D(2,1) = 144(2-2-1—1) > 0, and f,,(2,1) = 12 > 0, so f(2,1) = —8 is a local

minimum.

(a) Find the extreme values of f on the region described by the inequality:

flzy)=a*+y° 2 +y' <1

Solution: Since the region D = {(x,y)|z* + y* < 1} is a closed and bounded
region, we know that f achieves its maximum and minimum values on D. More-
over, the extrema will occur at a critical point of f in the interior of D, or at
a maximum or minimum on 9D = {(z,y)|z* + y* = 1}. Let g(z,y) = z* + y*
denote the constraint function for 0D.



(b)

We compute V f(z,y) = V(z*+y?) = (2z,2y), which has a critical point at (0,0),
and f(0,0) = 0.

To determine the extrema of f on 0D, we apply the method of Lagrange multipli-
ers. We have Vg = V(2t+y?) = (423, 4y3), and we set (2z, 2y) = \(42?, 49°). No-
tice that Vg # (0, 0) for any point in 9D, so that the Lagrange multiplier method
applies. So we need to solve simultaneously the equations 4\x? = 2z, 4\y® =
2y, zt +yt = 1.

Since (2Az? — 1)z = 0, we have either z = 0 or 2\z? = 1, and similarly y = 0 or
2% = 1.

Case 1: x =0 or y = 0 (but not both, since z* + y* = 1).

Then we get solutions (0,41),(41,0) using the equation z* + y* = 1. Then
f(0,£1) = f(£1,0) =1 at these points.

Case 2: z,y # 0.

Then we have 2 = 5% = y* = 2 = y*] from the constraint. Thus, z,y =
+2-1, and 22 = y? = \/LE So we have f(z,y) = 22+ = v/2 > 1 for these points.
Comparing values from the different points, we get a minimum value f(0,0) = 0,
and maximum value v/2.

Sketch the curve z* + y* = 1 and the level curves of 22 + y? going through the
maxima and minima of 22 + 32 on the curve z* + y* = 1. Also show V(22 + 3?)
and V(z* 4+ y?) at a maximum and minimum. Plot the maxima and minima of
2? + 9% in the region 2* + * < 1 on the same graph.

Find the area of the part of the surface z = xy that lies within the cylinder
2,2 _

x +y =1

Solution: We plug into the formula for the area of a graph, and convert to polar

coordinates:

Area:// 1+(%)2+(%)2d14=// V1+y?2+a2dA
r2+y2S1 (9.% ay w2+y2§1

2T

2 1
= [ ] VIEEdra = ol = () i- a0ty = Ziaion),
0 0

Sketch the surface.




7. Evaluate the triple integral

fff o

where T is the solid tetrahedron with vertices (0,0, 0), (1,0,0),(1,1,0), (1,0, 1).

Solution: The tetrahedron is given by the inequalities 0 <2 < 1,0 <y <x,0< 2 <
x —y. Then we have

1 T r—y 1 T q 1 zq
/// myde:/ / / xyzdzdyd:p:/ / [—wyzQ]g_ydydw:/ / —xy(z—y)?* dydz
T o Jo Jo 0o Jo 2 0o Jo 2
1

1 T 1
1 1 1 1 1 - 1 1 1
:/0 /0 §x3y—x2y2+§xy3dydx:/o [Zx3y2—§x2y3+§xy4]0dx:/o [Zx5—§x5+§x5]dx
114, 1
= 2lg b=

8. Evaluate the line integral [, F - dr, where C is given by the vector function r(t).
F(x,y) = (x,y,zy),r(t) = (cost,sint,t),0 < t < .

Solution: We have F(r(t)) = (cost,sint,costsint) and r'(t) = (—sint,cost, 1). Then

/ Fdr — / F(r(t)) - v ()dt

c 0
K s 1

= / (cost,sint,costsint) - (—sint,cost, 1)dt = / sint cos tdt = [5 sin®t]7 = 0.
0 0

9. Consider the 3-dimensional vector field
F =1+ sin zj 4 y cos zk.

(a) Find the curl and divergence of F.
Solution: From part (b), we have F =V f, so VXF =V xVf =0.
We also have V- F = %—F dsa;;”qL% = —ysin z.
(b) Find a function f such that F = Vf.
Solution: Suppose that F = V f.
Then % =1 = f(z,y,2) =2+ g(y, 2).
So g—g =sinz =g, = ¢(y,2) = ysinz + h(z).
Then % =ycosz =ycosz+ h'(z), so we may take h(z) = 0.
Then we have f(z,y,z) = x + ysin z.
(c) Evaluate the line integral [, F -dr, where C' is any path connecting (1,—1,0) to
(3,2, ).
Solution:
We have via the Fundamental Theorem of Line Integrals

/F-dr:/Vf-dr:f(3,2,7r)—f(1,—1,0):3+2sin7r—(1—sin0):2.
C C



10. Evaluate the surface integral [[ F -dS for the given vector field F and the oriented
surface S. In other words, find the flux of F across S.

F(x,y,2) = —xi — yj + 2°k,
S is the part of the cone z = \/m between the planes z = 1 and z = 3 with
downward orientation.
Solution: We have S = {(z,y,2)|z = v/22 + 32,1 < z < 3}. We may parameterize S
then via the function r(z,y) = (z,y, /22 +42),1 < /22 + 32 < 3.
We compute r, = (1,0, (22 + y?)~z - 22) = (1,0, 2),r, =(0,1,%).

Then we have

Y

z, .
Iy, XTI, = =—i—Zj+k
z oz

O = e
—_ O
wilken g K

Then F-(r, xr,) = (—x, —y, 2%) - (—x/z, —y/z,1) = 2*/2+y*/2+ 2> = 2+ 23. However,
the normal vector to S will point opposite to r, X r,, so we insert a minus sign in the
integral.

Now, we convert to polar coordinates, so that S is given by z =7, 1 <r <3,0<60 <
2m. So we have

2T 3 3
// F-dS= // —F - (r, xr,)dA = —/ / (r +r*)rdrdf = —271/ r2 o ridr
S 1<r<3 o J1 1

1 1
= —27T[§r3 + grf’]? = —2m[9 +243/5 — 1/3 — 1/5] = —17127/15.

11. Consider the 3-dimensional vector field F(z,y, 2) = (7552, 72152, 0)-

(a) What is the domain of F?

Solution: The domain is {(z,y, 2)| (z,y) # (0,0)}, that is the complement of
the z-axis.

(b) Show that for every smooth oriented surface S in the domain of F with smooth
oriented boundary curve C,
/ F.dr=0.
c
Solution: We compute
i J k

J «x o -y
=1|0/0x 0/0y 0/0z | = (— e
VxF /_x /0y /02 <8azx2+y2+8yx2+y2

k=0,
X

22+y?  2?4y?

so F' is irrotational. Thus, for a smooth oriented surface S in the domain of F,

we may apply Stokes’ theorem (since the domain of F is an open set containing

S) to conclude
/F-dr://VXF-dS:O.
c S
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Show that there is a closed curve B in the domain of F such that

/BF-dr#O.

[Hint: try a curve in the plane z = 0]
Solution: Let B be the closed curve r(t) = (cos(t),sin(¢),0),0 < ¢ < 27. Then
F(r(t)) = (—sin(t), cos(t),0), and r'(t) = (—sin(t), cos(t),0). So

/B Fedr — /0 B (e()r ()t — /O "(Z sin(), cos(t), 0+ (— sin(t), cos(t), 0) — 2.

Is F' a conservative vector field?

Solution: F is not conservative, since [ g F - dr = 27, whereas a conservative
vector field has zero line integral around each closed curve by 16.3.3.

12. Consider the 3-dimensional vector field

(a)
(b)

1
—(x,y, 2).

Fe.y.2) = (22 4+ y? + zQ)%

What is the domain of F?
Solution: The domain is {(x,y, z)| (z,y, z) # (0,0,0)}.

Show that for every closed bounded solid region £ in the domain of F with smooth

boundary surface S,
/ / F.dS = 0.
S

Solution: We compute V - F = 0. Thus, by the Divergence Theorem,

//SF~dS://EV«FdV:O.

Show that for a sphere R centered at the origin

//F-dS:47r.
R

Solution: Take the sphere R of radius r about 0 given by the equation x? +
y* + 2% = r?, with outward pointing unit normal n = {x,y, z) /r and F(z,y, z) =
(x,y,2)/r®. Then

//F~dS:// F(x,y,z) -ndS = %dS:AT’(ECL(R>/T2:47T.
R R RT

Does F = V x G for some vector field G?
Solution: Suppose that F =V x G. Then by Stokes” Theorem

//F-dS—//VXG-dS—/G-dr—O.
R R 0

However, this is false for the unit sphere from part (c), a contradiction. Thus,
F#V xG.



