
Midterm 2 solutions for MATH 53

November 18, 2014

1. Find the volume of the solid that lies under the hyperbolic paraboloid z = 3y2−x2 + 2
and above the rectangle R = [−1, 1]× [1, 2] in the xy-plane.

Solution: We set up the volume integral and apply Fubini’s theorem to convert it to
an iterated integral:

∫∫
R

3y2 − x2 + 2 dA =

∫ 1

−1

∫ 2

1

3y2 − x2 + 2 dydx =

∫ 1

−1
[y3 − yx2 + 2y]21 dx

=

∫ 1

−1
[23−2x2+4−(1−x2+2)] dx =

∫ 1

−1
9−x2dx = [9x−1

3
x3]1−1 = 9−1

3
−(−9+

1

3
) = 17

1

3
.

2. Evaluate the integral by reversing the order of integration.∫ √π
0

∫ √π
y

cos(x2)dxdy.

Solution: The region of integration is the type II region R = {(x, y), |0 ≤ y ≤
√
π, y ≤

x ≤
√
π}. We convert R to a type I region: 0 ≤ y ≤ x, so 0 ≤ x ≤

√
π. Therefore

by Fubini’s theorem (applied once in each direction), this is equivalent to the type I
integral ∫ √π

0

∫ √π
y

cos(x2) dxdy =

∫∫
R

cos(x2) dA =

∫ √π
0

∫ x

0

cos(x2) dydx

=

∫ √π
0

[y cos(x2)]x0 dx =

∫ √π
0

x cos(x2) dx =

∫ π

0

1

2
cos(u) du = [

1

2
sin(u)]π0 = 0,

using the substitution u = x2, du = 2xdx.

3. Let R be the region R = {(x, y)|1 ≤ x2 + y2 ≤ 4, 0 ≤ y ≤ x}. Evaluate the integral by
converting to polar coordinates: ∫∫

R

arctan(y/x) dA.

Solution: The region R is the polar rectangle 1 ≤ r =
√
x2 + y2 ≤ 2, 0 ≤ θ =

arctan(y/x) ≤ π/4, where the θ limits follow from arctan(0/x) = 0, arctan(x/x) = π/4.
Thus, we have∫∫

R

arctan(y/x) dA =

∫ π/4

0

∫ 2

1

θr drdθ =

∫ π/4

0

θ

∫ 2

1

r drdθ = [θ2/2]
π/4
0 [r2/2]21 = 3π2/64.



4. Find the volume and centroid of the solid E that lies above the cone z =
√
x2 + y2 and

below the sphere x2 +y2 + z2 = 1, using cylindrical or spherical coordinates, whichever
seems more appropriate. [Recall that the centroid is the center of mass of the solid
assuming constant density.]

Solution: In spherical coordinates, the regions are given by 0 ≤ φ ≤ π/4, 0 ≤ ρ ≤ 1.
Thus, we compute the volume in spherical coordinates

V ol(E) =

∫∫∫
E

dV =

∫ 2π

0

∫ π/4

0

∫ 1

0

ρ2 sin(φ) dρdφdθ =

∫ 2π

0

dθ

∫ π/4

0

sin(φ)dφ

∫ 1

0

ρ2dρ

= 2π · [− cos(φ)]
π/4
0 [ρ3/3]10 = 2π · (

√
2− 2)/2 · 1

3
= π(2−

√
2)/3.

We need to also compute the various moments. The xz− and yz− moments vanish
since the region is symmetric about the z-axis, and therefore x = y = 0. Thus, we
need only compute the xy−moment.

Mxy =

∫∫∫
E

zdV =

∫ 2π

0

∫ π/4

0

∫ 1

0

ρ3 cos(φ) sin(φ) dρdφdθ =

∫ 2π

0

dθ

∫ π/4

0

cos(φ) sin(φ)dφ

∫ 1

0

ρ3dρ

= 2π · [1
2

sin2(φ)]
π/4
0 [ρ4/4]10 = 2π · 1

4
· 1

4
= π/8.

So z = Mxy/V ol(E) = π/8/(π(2−
√

2)/3) = 3(2 +
√

2)/16.

5. Let R be the parallelogram with vertices (−1, 3), (1,−3), (3,−1), and (1, 5). Use the
transformation x = 1

4
(u+ v), y = 1

4
(v − 3u) to evaluate the integral∫∫
R

(4x+ 8y) dA.

Solution: Since the transformation is linear, it takes parallelograms to parallelograms.
We set 1

4
(u + v) = x, 1

4
(v − 3u) = y, so that u + v = 4x, v − 3u = 4y. Subtracting

the second equation from the first, we get 4u = 4x − 4y, so u = x − y. Add 3 times
the first equation to the second to get 4v = 12x + 4y, so v = 3x + y. Thus, the
rectangle Q = [−4, 4] × [0, 8] in the uv-plane maps to the parallelogram R under the
given transformation. We also compute the Jacobian

∂(x, y)

∂(u, v)
=

∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ =

∣∣∣∣ 1
4

1
4

−3
4

1
4

∣∣∣∣ =
1

4
.

We compute the integrand as 4x+ 8y = u+ v + 2(v − 3u) = −5u+ 3v. We apply the
formula for the change of variables∫∫

R

4x+8y dA =

∫ 4

−4

∫ 8

0

(−5u+3v)
1

4
dvdu = −5/4

∫ 4

−4
u du

∫ 8

0

dv+3/4

∫ 4

−4
du

∫ 8

0

v dv

= 0 +
3

4
[u]4−4[v

2/2]80 = 192.

2



6. Use Green’s Theorem to evaluate
∫
C
F · dr, where F = 〈e−x + y2, e−y + x2〉, and where

C consists of the arc of the curve y = cosx from (−π/2, 0) to (π/2, 0) and the line
segment from (π/2, 0) to (−π/2, 0).

Solution: The curve −C is the (counterclockwise) oriented boundary of the region D
given by D = {(x, y)| − π/2 ≤ x ≤ π/2, 0 ≤ y ≤ cos(x)}. If we denote F = 〈P,Q〉,
then ∂Q

∂x
− ∂P

∂y
= 2x− 2y. By Green’s theorem, we therefore have∫

C

F · dr = −
∫∫

D

2x− 2y dA =

∫ π/2

−π/2

∫ cos(x)

0

2y − 2x dydx =

∫ π/2

−π/2
[y2 − 2xy]

cos(x)
0 dx

=

∫ π/2

−π/2
cos2(x)− 2x cos(x) dx = π/2.

[Note: the integral of the second term of the integrand is 0 by symmetry.]

7. Find the curl and divergence of the vector field F. If it is conservative, find a function
f such that F = ∇f .

F(x, y, z) =
1√

x2 + y2 + z2
〈x, y, z〉.

Solution: Let r = 〈x, y, z〉, ρ =
√
x2 + y2 + z2. We recall that a vector field of

the form F = r/ρ is conservative, as proved in lecture. So we find a potential for
F first. In fact, since F is symmetric by rotation around the origin, we may find a
potential f(x, y, z) = g(ρ). We compute ∂ρ

∂x
= 1

2
(x2 + y2 + z2)−

1
2 (−2x) = −x

ρ
, and

similarly ∂ρ
∂y

= −y
ρ
, ∂ρ
∂z

= − z
ρ
. Thus, F = r/ρ = ∇f = g′(ρ)∇ρ = −g′(ρ)〈x, y, z〉/ρ, so

g′(ρ) = −1, and therefore we may take g(ρ) = −ρ. Therefore we have F = ∇(−ρ).
Since F has continuous derivatives where defined, we have ∇× F = ∇×∇(−ρ) = 0
by a theorem from the book.

We compute ∇ ·F = ∂(x/ρ)
∂x

+ ∂(y/ρ)
∂y

+ ∂(z/ρ)
∂z

. We have ∂(x/ρ)
∂x

= 1
ρ
− x2

ρ3
, and similarly for

the other two coordinates. Thus, ∇ · F = 3
ρ
− x2+y2+z2

ρ3
= 3

ρ
− ρ2

ρ3
= 2

ρ
.

8. Find the surface area of the surface defined parametrically by the vector equation
r(u, v) = u cos vi + u sin vj + vk, 0 ≤ u ≤ 1, 0 ≤ v ≤ u.

Solution: Let S denote the surface. We have ru = 〈cos v, sin v, 0〉, rv = 〈−u sin v, u cos v, 1〉.
Then

ru × rv =

∣∣∣∣∣∣
i j k

cos v sin v 0
−u sin v u cos v 1

∣∣∣∣∣∣ = 〈sin v,− cos v, u〉.

Then |ru × rv| =
√

1 + u2. We plug into the formula for surface area:

Area(S) =

∫ 1

0

∫ u

0

|ru × rv| dvdu =

∫ 1

0

∫ u

0

√
1 + u2 dvdu

=

∫ 1

0

u
√

1 + u2du = [
1

3
(1 + u2)3/2]10 =

1

3
23/2 − 1

3
=

2

3

√
2− 1

3
.

3


