Midterm 2 solutions for MATH 53
November 18, 2014

1. Find the volume of the solid that lies under the hyperbolic paraboloid z = 3y* — 2% + 2
and above the rectangle R = [—1,1] x [1, 2] in the zy-plane.

Solution: We set up the volume integral and apply Fubini’s theorem to convert it to
an iterated integral:
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2. Evaluate the integral by reversing the order of integration.
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Solution: The region of integration is the type Il region R = {(x,y), |0 <y < /7,y <
x < y/m}. We convert R to a type I region: 0 < y < z, so 0 < & < /m. Therefore
by Fubini’s theorem (applied once in each direction), this is equivalent to the type I

integral
VT VT Ve
/ / cos(2?) dxdy = // cos(z?) dA = / / cos(2?) dydx
o Jy R o Jo
VT VT ™1 1
= / [y cos(z?)|¢ dx = / xcos(z?) dx = / 5 cos(u) du = [5 sin(u)]§ = 0,
0 0 0

using the substitution u = 2%, du = 2xdz.

3. Let R be the region R = {(z,y)]1 < 2*+y*? < 4,0 < y < x}. Evaluate the integral by

converting to polar coordinates:
// arctan(y/x) dA.
R

Solution: The region R is the polar rectangle 1 < r = /22 +9y? < 2,0 < 6 =
arctan(y/x) < m/4, where the 6 limits follow from arctan(0/x) = 0, arctan(z/x) = 7 /4.
Thus, we have
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4. Find the volume and centroid of the solid F that lies above the cone z = /22 + y? and
below the sphere x2 +y? + 2% = 1, using cylindrical or spherical coordinates, whichever
seems more appropriate. [Recall that the centroid is the center of mass of the solid
assuming constant density.]

Solution: In spherical coordinates, the regions are given by 0 < ¢ < 7/4,0 < p < 1.
Thus, we compute the volume in spherical coordinates
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We need to also compute the various moments. The xz— and yz— moments vanish
since the region is symmetric about the z-axis, and therefore ¥ = 3 = 0. Thus, we
need only compute the xy—moment.
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So Z = M,,/Vol(E) = 7/8/(m(2 — v2)/3) = 3(2 + v/2)/16.

5. Let R be the parallelogram with vertices (—1,3),(1,-3),(3,—1), and (1,5). Use the
transformation z = 1(u +v),y = (v — 3u) to evaluate the integral

// 4z +8y) d

Solution: Since the transformation is linear, it takes parallelograms to parallelograms.
We set %(u +v) =z, ( — 3u) =y, so that u + v = 4x,v — 3u = 4y. Subtracting
the second equation from the first, we get 4u = 4o — 4y, so u = x —y. Add 3 times
the first equation to the second to get 4v = 12z + 4y, so v = 3z + y. Thus, the
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rectangle Q@ = [—4,4] x [0, 8] in the uv-plane maps to the parallelogram R under the
given transformation. We also compute the Jacobian
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We compute the integrand as 4x + 8y = u + v + 2(v — 3u) = —bu + 3v. We apply the
formula for the change of variables
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6. Use Green’s Theorem to evaluate [, F -dr, where F = (e7" +? e ¥ 4 z?), and where
C' consists of the arc of the curve y = cosz from (—7n/2,0) to (7/2,0) and the line
segment from (7/2,0) to (—7/2,0).

Solution: The curve —C' is the (counterclockwise) oriented boundary of the region D
given by D = {(z,y)] —7/2 <2 <7/2,0 <y < cos(z)}. If we denote F = (P, Q),

then ‘9— — %—1; 2x — 2y. By Green’s theorem, we therefore have
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= / cos?(z) — 2z cos(z) dx = /2.
/2

[Note: the integral of the second term of the integrand is 0 by symmetry.]

7. Find the curl and divergence of the vector field F. If it is conservative, find a function
f such that F = Vf.

1
F(z,y,2) = (2,5, 2).
Va2 +y? 4 22
Solution: Let r = (z,y,2),p = a2+ y?>+ 22. We recall that a vector field of

the form F = r/ p is conservative, as proved in lecture. So we find a potential for
F first. In fact, since F is symmetric by rotation around the origin, we may find a
potential f(z,y,2) = g(p). We compute % = (2 + 2 + 22)"2(—2z) = —2, and
similarly % 8’) = %, % = —2. Thus, F = r/p=Vf=4¢(p)Vp=—4¢(p)z,y,z)/p, so
Jd(p) = —1, and therefore we may take g(p) = —p. Therefore we have F = V(—p).
Since F has continuous derivatives where defined, we have VX F =V x V(—p) =0

by a theorem from the book.

We compute V- F = a(;ép) + a(ggp) + Z/p . We have g/p) = % — f)—;, and similarly for
the other two coordinates. Thus, V - F = ; — % = % — ﬁ—i = %.

8. Find the surface area of the surface defined parametrically by the vector equation
r(u,v) = ucosvi+usinvj + vk, 0 <u<1,0<v <u.

Solution: Let S denote the surface. We have r,, = (cos v, sinv, 0),r, = (—usinv, ucosv, 1).
Then
i [
r, Xr,=/| Cosv sinv 0 | = (sinwv, — cos v, u).
—usinv wucosv 1

Then |r, x r,| = V1 + u?. We plug into the formula for surface area:

1 u 1 u
Area(S) = / / v, X r,| dvdu = / / V1+u? dvdu
o Jo o Jo

lypp 1 25 1

1
1
_ 1 2y — [—(1 2\3/211 _
/Ou¢+uu SO+ =¥ 2= 2Va -



