
Midterm 1 Solutions for MATH 53

October 7, 2014

1. Find the area of the region enclosed by one loop of the curve r2 = sin(2θ).

Solution: We set r = 0 to find the values of θ giving a single loop, obtaining 2θ = 0, π,
so 0 ≤ θ ≤ π/2 gives a single loop of the graph. Now, we plug into the equation for
the area of a polar graph:

∫ π/2

0

1

2
r2dθ =

∫ π/2

0

1

2
sin(2θ)dθ =

∫ π/2

0

sin θ cos θdθ.

Substitute u = sin θ, du = cos θdθ to get

=

∫ 1

0

udu = [
1

2
u2]10 =

1

2
.

2. Decide if the triangle with vertices

P (0,−3,−4), Q(1,−5,−1), R(5,−6,−3)

is right-angled

(a) using angles between vectors

(b) using distances and the Pythagorean theorem.

Solution: We compute

|P −Q|2 = (0− 1)2 + (−3− (−5))2 + (−4− (−1))2 = 14,

|Q−R|2 = (1− 5)2 + (−5− (−6))2 + (−1− (−3))2 = 21,

|P −R|2 = (−5)2 + (−3− (−6))2 + (−4− (−3))2 = 35.

Clearly if PQR is a right triangle, P−R is the hypotenuse, so we compute the dot
product between the vectors P−Q = 〈−1, 2,−3〉 and R−Q = 〈4,−1,−2〉. Then
(P−Q) · (R−Q) = (−1)4 + 2(−1) − 3(−2) = 0. Thus, PQR is a right triangle by
12.3.7.

We also see that |P −R|2 = 35 = 21+14 = |Q−R|2 + |P −Q|2, so it is a right triangle
by the Pythagorean theorem.



3. Find an equation for the plane that passes through the point (−2, 4,−3) and is per-
pendicular to the planes −x+ 3y − 5z = 42 and y − 2z = −5.

Solution: The normal vectors to the two planes are given by 〈−1, 3,−5〉 and 〈0, 1,−2〉.
The cross product will be perpendicular to both normal vectors, and thus will be
parallel to the line of intersection of the two planes.

〈−1, 3,−5〉 × 〈0, 1,−2〉 =

∣∣∣∣∣∣
i j k
−1 3 −5
0 1 −2

∣∣∣∣∣∣ =

= (3 · (−2)− (−5) · 1)i− (−1 · (−2)− (−5) · 0)j + (−1 · 1− 3 · 0)k = −i− 2j− k.

We now compute the equation for the plane as:

−(x− (−2))− 2(y − 4)− (z − (−3)) = −x− 2y − z + 6 = 0.

4. Let r(t) = 〈sin t, 2 cos t〉.

(a) Sketch the plane curve with the given vector equation.

(b) Find r′(t).

Solution:
r′(t) = 〈cos t,−2 sin t〉.

(c) Sketch the position vector r(t) and the tangent vector r′(t) for the value t = π/4.

Solution: We have r(π/4) = 〈
√

2/2,
√

2〉 and r′(π/4) = 〈
√

2/2,−
√

2〉. We plot
the vectors at this point:

5. Find the limit, if it exists, or show that the limit does not exist.
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(a)

lim
(x,y)→(1,0)

xy − y
(x− 1)2 + y2

.

Solution: Let y = 0, then we get the 1-variable limit

lim
x→1

(x− 1) · 0
(x− 1)2 + 02

= 0.

Now let x = y + 1, then

lim
y→0

(y + 1− 1)y

(y + 1− 1)2 + y2
=

1

2
.

Since we obtain two different limits, the limit does not exist (see p. 894).

(b)

lim
(x,y)→(1,0)

xy − y√
(x− 1)2 + y2

.

Solution: We have |x − 1| ≤
√

(x− 1)2 + y2, |y| ≤
√

(x− 1)2 + y2, so |(x−1)y|√
(x−1)2+y2

≤√
(x− 1)2 + y2. Thus,

lim
(x,y)→(1,0)

|xy − y|√
(x− 1)2 + y2

≤ lim
(x,y)→(1,0)

√
(x− 1)2 + y2 = 0.

By the squeeze theorem, the limit exists and = 0.

6. Use the Chain Rule to find dw/dt. Express your answer solely in terms of the variable
t.

w = ln
√
x2 + y2 + z2, x = sin t, y = cos t, z = tan t.

Solution: We have w = 1
2

ln(x2 + y2 + z2). We apply the multivariable Chain Rule:

dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt
=

1

2

1

x2 + y2 + z2
(2x · cos t+ 2y · (− sin t) + 2z · sec2 t) =

1

sin2 t+ cos2 t+ tan2 t
(sin t cos t− cos t sin t+ tan t sec2 t) =

1

sec2 t
tan t sec2 t = tan t.

Here, we’ve used the identities sin2 t + cos2 t = 1, 1 + tan2 t = sec2 t, and we used
the single variable chain rule to differentiate w as well as formulae for derivatives of
trigonometric functions.
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7. Find the equations of (a) the tangent plane and (b) the normal line to the given surface
at the specified point.

x2 + y2 + z2 = 3xyz, (1, 1, 1).

Solution: Let F (x, y, z) = x2 + y2 + z2 − 3xyz, then we are looking at the level set
F (x, y, z) = 0. This function is everywhere infinitely differentiable by the product and
sum and chain rules since it is a polynomial.

We compute ∇F (x, y, z) = 〈2x− 3yz, 2y − 3xz, 2z − 3xy〉, and evaluate ∇F (1, 1, 1) =
〈−1,−1,−1〉. By 14.6.19, this is the normal vector to the tangent plane −(x − 1) −
(y− 1)− (z − 1) = −x− y− z + 3 = 0, so we have x+ y + z = 3 is the tangent plane,
answering (a).

For (b), we have the parametric equation for the line given by r(t) = 〈1, 1, 1〉+ (−t+
1)〈−1,−1,−1〉 = 〈t, t, t〉. We used the vector function formula for a line, together with
the fact that we may choose the parameter however we like.

8. Find the extreme values of f on the region described by the inequality.

f(x, y) = 2x2 + 3y2 − 4x− 5, x2 + y2 ≤ 16.

Solution:

The region {(x, y)| x2 + y2 ≤ 16} is a closed and bounded region. Thus, we may apply
the Extreme Value Theorem to conclude that the continuous function f(x, y) achieves
an absolute maximum and absolute minimum in the region.

We may therefore apply method 14.7.9. The gradient is ∇f(x, y) = 〈4x − 4, 6y〉 by
the differentiation rules. So the critical point is at 4x − 4 = 0, 6y = 0, which implies
x = 1, y = 0 which is in the interior of the region. We compute f(1, 0) = 2−4−5 = −7.

Next, we need to find the extrema of f on the boundary of the region {(x, y)|x2 + y2 =
16}. We use the method of Lagrange multipliers. The constraint function is g(x, y) =
x2 + y2 − 16, and ∇g = 〈2x, 2y〉. We set ∇f = λ∇g, so 4x − 4 = λ2x, 6y = λ2y. If
y = 0, then we see that x = ±4 from the constraint x2 + 02 = 16. If y 6= 0, then we
have λ = 3, so 4x − 4 = 6x, and x = −2. Thus, (−2)2 + y2 = 16, so y2 = 12, and
y = ±2

√
3.

We compute f(±4, 0) = 2(±4)2−4(±4)−5 = 32∓16−5 = 11, 43 and f(−2,±2
√

3) =
2(−2)2 + 3 · 12− 4(−2)− 5 = 47. Comparing values, we see that the maximum value
is 47, and the minimum value is −7.

9. (Extra Credit 4 pts.)

If r(t) is a 3-dimensional vector-valued function having all derivatives existing, and

u(t) = r(t) · [r′(t)× r′′(t)],

show that
u′(t) = r(t) · [r′(t)× r′′′(t)].
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Solution:

We use the product rule for dot and cross products Theorem 13.2.3(4-5):

u′(t) = r′(t) · [r′(t)× r′′(t)] + r(t) · [r′(t)× r′′(t)]′ =

[r′(t)× r′(t)] · r′′(t) + r(t) · [r′′(t)× r′′(t)] + r(t) · [r′(t)× r′′′(t)] = r(t) · [r′(t)× r′′′(t)].

Here we are using 12.4.11(5) to rearrange the triple scalar product and the fact that
a× a = 0 for any 3-dimensional vector.
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