
1) A) Before t=0 switch 2 is open so the lower half of the circuit can be ignored as no current can flow 
through it. Then by kirkoff’s law we have 2V=Q/C (using Q=CV_across capacitor) or Q=2CV. 
B) For t>0 switch one is opened and so we can ignore the upper loop of the circuit. Now by kirkoff’s law 
V-Q/C-IR=0 We recognize I=dQ/dt, rearranging this equation we have dt=-RCdQ/(Q-CV), integrating 
from t=0 to arbitrary t and from Q(0)=2CV to Q(t) we get t=-RC[ln(Q(t)-CV)-ln(2CV-CV)], combining the 
logarithms with lna-lnb=lna/b and exponentiating we get Q(t)=CV(exp(-t/RC)+1), which matches our 
boundary condition of Q(0)=2CV and limits to CV. 
 

       2)    We know that the strength of the B field from the infinite wire is µI/(2πr) with a direction given by the right 
hand rule, where r is the cylindrical coordinates distance. As the field varies in space we must consider infinitesimal 
torque contributions, dτ=(rxdF) where this r is the separation from the intersection of the wires, dF=IdlxB, following 
the right hand rule we see that at each point along the wire dl and B are perpendicular and dF points in the plane, 
perpendicular to the wire, above the intersection the force is upwards away from the wire and below the force is 
downwards away from the wire, the direction of the dτ for each segment is out of the paper, and as all vectors used 
are orthogonal we don’t pick up any sin factors from cross products. Because of symmetry in the magnitude and 
direction of dτ along the wire. I can integrate from the intersection up to one halfs end which I will parameterize as h 

ϵ [0,L/2] and multiple the integral by 2, so � =
��2� ∫ ℎ�ℎℎ���(�)

=
��2�2� sin(�)

�/20  . The h in the numerator comes from the 

torque rxF, as h is the distance from the intersection and the hsin(θ) comes from 1/r in the B field. Not surprisingly 
this torque diverges as the wires become very close as the field also diverges. 
      3) The strategy here will be identifying each infinitesimal strip at fixed θ to be a current loop and to integrate 
over the strips. If we have a current loop of radius r, current I the field a distance z above or below the axis will be in 
the upwards direction defined by the direction of the current given by the biot savart law as the integral of 
dB=μI/4π(dlxr)/r^3, as dl and r is always perpendicular we don’t pick up any sin factors and the separation is 
constant, by rotational symmetry of the current distribution the B field will project exclusively onto the Z axis so the 

total B is dB*2πr*cos(θ)= �2��2(�2+�2)
32 

   . The charge will be distributed over the sphere as Q/4πR^2 so the linear charge 

density will be Q/4πR^2*Rdθ, each dq will be moving with velocity wRcos(θ) if θ opens from the XY plane, so the 
current at θ is  � = �� =

�4��2 �������(�)�. Noting now that r^2+z^2=R^2 over the sphere and r=Rsin(θ). We see 

that the B field at the center is � =

2����2�3��24� ∫ cos(�)3�� =
���4�� ∗ 23�/20  

 



SOLUTIONS TO THE 7B FINAL

Problem 4

As there are no charges in the region we consider, the only source of
the electric field is the changing ~B-field. To calculate its value, we can
use Faraday’s law:

∮

∂S

~E · d~s = E = −
dΦB

dt
= −

d

dt

∫∫

S

~B · d ~A. (1)

In order to apply (1), we first have to find the direction of the ~E-field,
so that we can choose the right surface S and simplify the integral.
There are several ways to do so, the simplest one is to just remember
from the lecture that the relative orientation of the ~E-field lines and
the change in the ~B-field is given by the right-hand rule, so

~E = E(r)θ̂, (2)

where we chose cylindrical coordinates with ẑ pointing out of the paper.
A way to derive this is to notice that for any given wire loop, E is
maximized when ~E is tangential to the loop. By (1), this happens
if the change of flux through the loop is maximal. In our situation,
this change in flux is proportional to the enclosed area, and the shape
that has a maximal area for a given boundary length is a circle (this is
known as the isoperimetric inequality).
A way to mathematically derive (2) is by using the infinitesimal version
of (1), which we can get by applying Stoke’s theorem on the integral
on the left-hand side:

∇× ~E = −
d ~B

dt
. (3)

So by (3) and

∇ · ~E = 0, (4)

the ~E-field is determined up to a global constant, which we set to zero
because we want it to vanish at infinity.
So in cylindrical coordinates centered at the origin of the circles, the
curl of the electric field only has a ẑ component, and thus the ~E field
only has a θ̂ component.
Yet another way to derive (2) is by using Gauss’ law and symmetry
arguments.
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2 SOLUTIONS TO THE 7B FINAL

To calculate the actual value of ~E, which only depends on r (due to the

symmetry of the ~B-field in z and θ), we use (1) for a disk S with radius

r. We choose the orientation of S such that d ~A = dA · ẑ. Because of
(2) and the fact that ~B only has a ẑ component, we can simplify the
integral for E :

∮

∂S

~E · d~s =

∮

∂S

E(r) ds = E(r) 2πr. (5)

Now we’ll distinguish three cases:

(i) r ≤ a:
For the inner region, we have

E·2πr = −
d

dt

∫∫

S

~B·d ~A = −B0

d

dt
cos(ωt)·πr2 = ωB0 sin(ωt)·πr

2. (6)

So
~E = B0

rω

2
sin(ωt) · θ̂, r ≤ a. (7)

(ii) a < r ≤ 2a:
Here, we have to make sure to include the flux from the inner

circle as well:

E · 2πr = −
d

dt

[

B0 cos(ωt) · πa
2 −

B0

3
cos(ωt) · π(r2 − a2)

]

(8)

So

~E = B0

ω

2r
sin(ωt)

(

4a2

3
−

r2

3

)

· θ̂, a < r ≤ 2a. (9)

(iii) r > 2a: In the last region, we have to make sure not to integrate
too far:

E · 2πr = −
d

dt

[

B0 cos(ωt) · πa
2 −

B0

3
cos(ωt) · π · 3a2

]

= 0. (10)

So ~E vanishes here.

Note that ~E is continuous!

Problem 5

For this problem, we will use the formulas for the inductance on the
equation sheet. We first have to calculate the ~B-field, however. From
symmetry, it should be clear that the direction of the magnetic field is
parallel to the plates in the ŷ direction (remember the analogous argu-
ment for the solenoid). It’s confined to the interior region of the plates.
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Its magnitude can be found by using Ampere’s law for a rectangular
surface S of height h that lies in the plane of the paper and intersects
one of the slabs. Then Ampere’s law tells us that

µ0Ienc =

∮

∂S

~B · d~s. (11)

In the present case, this gives us

B · h = µ0 j · h, ⇒ ~B = jµ0 · ŷ. (12)

a. For the self-inductance, we use

U =
1

2µ0

∫∫∫

| ~B|2dV =
1

2
LI2. (13)

Thus,

1

2
LI2 =

1

2µ0

j2µ2

0
· lwd =

I2

2
·
µ0lwd

l2
, (14)

where we used that j = I

l
. So

L = µ0

wd

l
. (15)

b. For the mutual inductance, we use that for the mutual induc-
tance M ,

E2 = −M
d

dt
I1, (16)

where E2 is the emf induced in the second solenoid by the cur-
rent I1 in the first one (it’s clear to see that this equation is
equivalent to the one on the equation sheet, but less ambigu-
ous). We know that

E2 = −
d

dt
ΦB = −

d

dt
B(t) · A = −µ0 xw

d

dt

[

I(t)

l

]

. (17)

Thus,

M = µ0

xw

l
. (18)

Problem 6

Taking the hint from the problem text, we can view the capacitor as a
collection of infinitely many capacitors in series with varying elastance
Y (r). We want to calculate the equivalent capacitance per unit length,
C/l, which is equivalent to calculating the equivalent elastance times
the unit length, Y l.
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The capacitance of a cylindrical capacitor is given on the equation
sheet, so we’ll use that the elastance of the cylindrical capacitor at
radius r and thickness dr is given by

Y (r) = log

(

r + dr

r

)

1

2πK(r)ǫ0l
= log

(

1 +
dr

r

)

1

2πK(r)ǫ0l
. (19)

Using the Taylor expansion for the logarithm, we can simplify this for
infinitesimal dr:

Y (r) =
dr

r
·

1

2πK(r)ǫ0l
. (20)

Because elastances for capacitors in series add, we find

Ytot · l =

∫

b

a

Y (r)ldr =

∫

b

a

1

2πǫ0K0a2
·
dr

r
=

1

2πǫ0K0a2
log

b

a
. (21)

Thus, the total equivalent capacitance per unit length is

Ctot =
2πǫ0K0a

2

log b

a

. (22)



Problem 7

a)

Plugging in 1 for G(E) gives

1 = A(e
−

E0
kBT + e

−
E0+Λ

kBT )

A =
1

e
−

E0
kBT + e

−
E0+Λ

kBT

b)

Plugging in E for G(E) gives

< E > =
E0e

−
E0

kBT + (E0 + Λ)e
−

E0+Λ

kBT

e
−

E0
kBT + e

−
E0+Λ

kBT

< E > =
E0 + (E0 + Λ)e

−
Λ

kBT

1 + e
−

Λ
kBT

c)

When T → 0, the argument of the exponential is extremely large and negative, so the exponential is zero,
thus

lim
T→0

< E >= E0

At zero temperature, there are not enough thermal fluctuations to excite the atoms into a higher energy
state, so all of the atoms are in the lower energy state.
When T → ∞, the argument of the exponential is 0, so the exponetials are 1. In this case,

lim
T→∞

< E >= E0 +
Λ

2

At large temperatures, thermal fluctuations are large enough to make both states look equivalent. Thus,
roughly half of the atoms will be in the lower energy state and roughly half will be in the higher energy
state. Thus, the average energy is the average of the energies of the two states.
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