
Physics 7A Lecture 3 Fall 2014

Midterm 1 Solutions

October 5, 2014

1



Problem 1 (total: 20 Points)

Your are planning the takeoff (T/O) of your twin-engine 8-seater plane for the return flight. The
airplane must reach takeoff speed (VTO) by the end of the runway, which has length, L. When needed
the aircraft T/O acceleration can be increased by unloading some of the luggage [in this problem VTO,
L, and b (see below) are the known variables - in each part express answer(s) in terms of known
variables and/or in terms of quantities previously computed].

a) (5 pts)

What is the minimum acceleration, a, needed to achieve T/O speed in length L in terms of known
variables.

For this problem, if one remembered, they could very quickly apply the function that gives the final
velocity squared to solve for the accelerations. That is:

v2f = v2i + 2a∆x (1)

When considering that the initial velocity is zero, i.e. vi = 0, and that the final velocity is the take-off
velocity, vf = vTO we have

v2TO = 2aL

This reduces to give you the final answer

a =
v2TO
2L

. (2)

Another way to go about this if you did not remember the velocity squared formula, eqn. (1), is to
use the 1D kinematic equations for the velocity and the position, that is:

x(t) = x0 + v0t+
1

2
a0t

2

v(t) = v0 + a0t

Given our scenario, these become

L = 0 + 0t+
1

2
at2 =

1

2
at2 (3)

vTO = at

We can then see that the time it takes to reach the take-off velocity is t = vTO/a, which when when
plugged into eqn. (3) give us the same solution, (2).

b) (7 pts)

After unloading some of the bags so that your acceleration will be the one you calculated in (a) you
must compute V1 which is known as the ”decision speed”. V1 occurs before VTO and has the following
property: as you accelerate on the runway, should an emergency arise before reaching and up to veloc-
ity V1, you can stop the airplane within the runway length by applying maximum braking. Maximum
braking for your airplane results in an acceleration −b (a deceleration a and b are positive quantities;
the positive x-direction is the T/O direction). Calculate V1.

For this problem it may have been useful to some to have drawn a picture, as has been done below. As
we can see in the picture, at first the plane is accelerating at a rate a along an arbitrary distance x1
(define the variable however you like) until it reaches a speed vTO. Thereafter, it begins to decelerate
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at a rate −b for a distance x2 until it comes to a stop, i.e. when v = 0, hopefully by the end of the
runway at x = L.

Once again we can consider eqn. (1), but apply it twice with respect to the two halves. This can be
written out as,

v21 = 0 + 2a∆x1

0 = v21 − 2b∆x2

We can rearrange these equations to get a relationship between the two distances, x1 and x2.

v21 = 2ax1

v21 = 2bx2

Which is
2ax1 = 2bx2

ax1 = bx2

giving us x1 = b
ax2. Note, x1 is not necessarily bigger than x2 as has been drawn in the picture. In

addition, we should make note of the fact that we know the partial distances with respect to the total
distance, that is.

x1 + x2 = L (4)

We can plug this into our relation for the two partial distances in order to solve for one or the other.

x1 + x2 =
b

a
x2 + x2 =

(
b

a
+ 1

)
x2 = L

x2 =
L

b
a + 1

=
aL

a+ b
(5)

Many people had trouble with fractions. It is important to remember that the inverse of something
like ( 1

α + 1
β )−1 = αβ

α+β and not α+ β. Given that we have a value for x2 (you can also solve for x1 in

the same way and use that instead), we can plug this back into eqn. (1) to get

v21 = 2bx2 = 2b

(
aL

a+ b

)

which then gives us our final answer

v1 =

√
2abL

a+ b

There were several ways this could be written given that it was not specified what variables things
needed to be reduced to, and so another common answer was, by plugging in a = v2TO/2L,

v1 =

√
2bLv2TO
v2TO + 2bL
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c) (8 pts)

You proceed with the T/O and accelerate on the runway as planned. Just before V1, the right engine
low-oil warning red light comes on. You decide to abort the T/O and you apply maximum braking
just as you reach V1. Unfortunately one of your two brakes immediately fails (there is one brake on
each of the two main landing gears), reducing your braking capability to an acceleration −b/2. What
will be your velocity at the end of the runway? (fortunately there is a swamp at the end of the runway
(at x = L); the airplane overruns the runway and sinks into the mud but you all escape unscathed).

This problem could be answered very quickly if you remembered eqn. (1) or with a lot of algebra if you
did not. First using eqn. (1), we define the relation between the final velocity vf and its components
as

v2f = v21 + 2

(
− b

2

)
x2 = v21 − bx2 (6)

If you solved for the distance traveled in the second half of the runway you can plug it in now. Note,
even though the acceleration is now different, −b/2 and not −b, the distance is still the same because
the acceleration was the same in the first half of the runway. Plugging this in along with our value for
v1 we get

v2f =
2abL

a+ b
− b

(
aL

a+ b

)
=

2abL

a+ b
− abL

a+ b
=

abL

a+ b

The solution for vf could be written in a variety of ways given the plethora of variables, which are all
nonetheless equivalent, but the most common solutions were

vf =

√
abL

a+ b
=

√
bLv2TO

v2TO + 2bL
=

√
v21
2

If you did not remember eqn. (1) and your previous analysis was insufficient to lead on the right path,
you could have gotten result in the following way

vf = v0 + a0t = v − b

2
t

xf = L = x0 + v0t+
1

2
aot

2 = 12at21 + v1t2 − b4t22 (7)

Where the at21/2 term is the distance traveled in the first half and t1 = v1/a. Using our the general
velocity kinematic equation we can solve for t2 as

vf = v1 −
b

2
t2 → t2 =

vf − v1
−b/2 =

2(v1 − vf )

b

and plug this into eqn. (7) to get

L =
v21
2a2

+ v1
2(v1 − vf )

b
− b

4

4(v1 − vf )2

b2

0 = −L+
v21
2a2

+
2v21
b
− 2v1vf

b
− v21

b
+

2v1vf
b
−
v2f
b

If we cancel out redundant terms, plug in our previous value for v1 (if you did not get even this then
the there is even more algebra involved which will not be done here), and solve for vf you get.

v2f = −Lb+
b

2a

2abL

a+ b
+

2abL

a+ b
= −[−Lb(a+ b) + ab2L+ 2abL]/(a+ b)

= [−Lab− Lab2 + ab2L+ 2abL]/(a+ b) =
abL

a+ b

Which gives us the same result as before, that is

vf =

√
abL

a+ b

3



Problem 2 
Part a) 
FBD for M1 and M2 
 

 
 
 
b)  
Both objects have the same horizontal acceleration  
For M2 
	  

	  
	  
Or: 

	  



Part c) 
FBD for M1 and M2 
 

 
 
Part d) 

 
 
Method 1: 
 

 
 
Method 2: 



 
 

 



Problem 3 

A spherical mass M is connected to the ends of two massless wires. The upper ends of the two wires are 

connected to a pole, as shown. The system rotates as a whole about the vertical axis at frequency of 

revolution, f (revolutions/s). [In this problem L1, L2, θ, d, and g are the known variables]. 

(a) In your blue book, draw a free body diagram for mass M (3 points) 

 

 

 

 

(b) In terms of the known variables, what is the frequency of revolution, f, at which the tensions in 

the two wires are equal in magnitude? (14 points) 

 

i) Set the tensions in the wire equal 

            

ii) Calculate the radius of rotation using geometry  

                     

iii) Set up your ‘F=ma’ equations 

∑                   
   

 
  

∑                           

iv) Set the two equations equal 
   

 
        

                             

     √     √          √         

 v) Set up your equation for frequency 

  
 

   
  

vi) Solution 

  
√       

        
 
√        

        
  

  
 

  
√

 

      
      

 

  
√

 

      
  

 

 

 

 

M 

y 

x 

Mg  

T2  

T1  



(c) So as to make the tension in L1 greater than the tension in L2, would the frequency of revolution, 

f, need to be increased or decreased, and why? (3 points) 

 

To make T1 > T2, f would need to be decreased. 

There are several possible explanations. One possible explanation is to assume look at 

the extreme case where T1 >>> T2. T1 has high tension and T2 has a lot of slack. 

 

 

 

 

 

 

In this case T1 is nearly equal to Mg. Adjusting the equations above, we get a new 

frequency as shown below 

∑             
   

 
        

 

  
 

  
√
 

  
 

 

This new frequency is smaller than the frequency calculated in part b, and therefore 

frequency decreases. 

 



Lecture 3 Midterm 1       

Question 4 Solution 

 

a) ���,�� = velocity of current with respect to the shore 

���,�  = velocity of swimmer relative to water 

 

���,�� = velocity of swimmer with respect to the shore 

 

���,�� = ���,� + ���,�� 

 

Velocities should be added head-to-tail in the diagram. 

 

b) In order to swim in the direct path indicated, the sum of the x-components 

of the ���,�  and ���,�� should add up to zero, i.e. they cancel each other out. 

��,��	 = ��,�	  + ��,��	 =��,� · sin ��,�   ̶   ��,�� · sin ��,�� = 0 

 

Negative sign indicates the ��,��	 is negative in the x-direction.  We can 

solve for ��,�: 

sin ��,�   =  ��,�� · sin ��,�� 

sin ��,�   =  
��,��·��� ��,��

��,�
 

Put in values ��,�= 60⁰, ��,��= 1 mph, ��,� = 2 mph.  We find  

��,� = ����� �√�
 ! ≈ 25.7⁰. 

 

c) For crossing time, all that matters is the motion in the y-direction.  The 

speed in y-direction is:  

 

��,��"  = ��,�"  + ��,��"  = ��,� · cos ��,�   +  ��,�� · cos ��,�� 

 

���,�  

���,��  

���,��  

��,��  

��,�  

% 

& 



Use the basic formula for speed to determine the time needed to cross: 

tcross = 
'

 ��,�·()� ��,�   *  ��,��·()� ��,��
 

Put in numbers, L = 20 miles, ��,�= 60⁰, ��,� = 2 mph, ��,��= 1 mph, and 

��,��= ����� �√�
 !, we find  

tcross = 
 +

�*√�� hours ≈ 8.69 hours 

 

d) From working out part c), you should have realized that x- and y- motions 

should be analyzed independently.  For comparison of new crossing time 

with the planned crossing time, it’s easier to consider the new ��,��".  

Because the final point of arrival is to the right of the planned point of 

arrival, we can infer that new �′�,� < ��,�. 

 

 

 

 

 

 

 Planned, direct path   Actual path 

 

We can clearly see that the new velocity vector �′---��,��has a larger 

component in the y-direction.  The y-component of the path is still L = 20 

miles.  Therefore, taking this actual path will take less time, surprisingly, 

even though it’s a longer path!  In short, you’re spending less effort to swim 

against the current in the x-direction so you’re faster in the y-direction. 

���,��  

���,��  

���,�  

��,�  

& 

% 

�′�,�  

�′---��,�  

���,��  

�′---��,��  



Problem 5(a) - Projectile Motion

For this problem a coordinate system is chosen so that the air gun is at the origin. The
strategy to solve this problem is to find the time, the monkey needs to reach the hight
h/2 (free fall). Afterwards v0,x can be found by considering the motion of the dart in
x-direction only and v0,y can be found by considering the motion in the y-direction only.
Knowing v0,x and v0,y allows us to calculate v0 by the Pythagorean theorem.

The monkey is falling freely from rest. Therefore his equation of motion is given by:

ym(t) = −1

2
gt2 + h . (1)

The time t0, passing until the monkey reaches the height h/2 is:

ym(t0) =
h

2

⇒ −1

2
gt20 + h =

h

2

⇒ t0 =

√
h

g
. (2)

The motion of the dart in x-direction is not accelerated. It is describes by:

xd(t) = v0,x · t . (3)

In the time t0, the dart must travel the distance d. This allows to calculate v0,x:

xd(t0) = d

⇒ v0,x ·
√
h

g
= d

⇒ v0,x =

√
g

h
· d (4)

The equation of motion for the dart in y-direction is:

yd(t) = −1

2
gt2 + v0,yt . (5)
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This allows to calculate v0,y, since

yd(t0) =
h

2

⇒ −1

2
g

(√
h

g

)2

+ v0,y

√
h

g
=
h

2

⇒ −1

2
h+ v0,y

√
h

g
=
h

2

⇒ v0,y =
√
h · g (6)

The calculate v0, the Pythagorean theorem is used:

v0 =
√
v20,x + v20,y

⇒ v0 =

√
g · d2
h

+ h · g

⇒ v0 =

√
g

h
(h2 + d2) (7)
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Problem 5(b)

The equation of motion for the x-direction will be used to find the time, the dart needs
to travel a distance d:

xd(t0) = v0,x · t0 = d (8)

⇒ t =
d

v0,x
(9)

Notice, that v0,x in part (a) is different. The equation of motion for the y-direction is:

yd(t0) = −1

2
g · t20 + v0,y · t0 = 0 (10)

⇒ −g
2

d2

v20,x
+ d

v0,y
v0,x

= 0

To find the angle θ, the identities v0,x = v0 · cos(θ) and v0,y = v0 · sin(θ) are used:

⇒ −g
2

d2

v20 cos2(θ)
+ d

v0 sin(θ)

v0 cos(θ)
= 0

⇒ sin(θ) cos(θ) =
gd

2v20

⇒ sin(2θ) =
gd

v20

⇒ θ =
1

2
arcsin

(
gd

v20

)
(11)

Substituting the result from Problem 5 (a) for v0 will finally give:

θ =
1

2
arcsin

(
dh

h2 + d2

)
(12)
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