Problem 1

a.) The relevant equation for conductive heat transfer is:

At the junction, given that there are no fluctuations in time, we have
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Solving for Ty, we have:

T, — THk1/L1 + TCkQ/LQ
’ ki/L1 + ka/ Lo

b.) The rate of heat transfer into the ice is:

AQ T;—Tc
A - RATE

The amount of heat required to melt the ice is:

AQ = MLy

Therefore the time required to melt it is:

AQL MLprL
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AT =T0) o (TR - To)

Problem 2
We remember Archimedes’ principle (i.e. buoyancy = weight of displaced fluid). This gives us the relations
between the initial densities:

1 1
Psphere * V:ephere = Pliquid * *Vrsphere = Psphere = 7 Pliquid
2 2

At neutral buoyancy we have:

p/sphere = Pfiquz‘d

Therefore we have:
Mgphere _
Viphere + AViphere
Plugging in the initial density values:
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2(1 + A‘/sphere/Vsphere) =1+ sziqu'id/vziquid
Using the fact that AV/V = AT:
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Problem 3

The heat lost by the skewer has to equal the heat gained by the water, so:
Mgcs(Ty —Tr) = Mwew (Tr — Tw) (1)

which gives

_ MscsTy + MwewTw

Mscs + My cew
Using d@ = MgcgdT, the entropy change of the skewer is

dQ MscsdT TF
ASs= | — = | ———— = MgcgIn — .
Sg / T / T SCs In Ts <0 (3)

In exactly the same way we get for the water:
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ASw = Mycw In =2 > 0. (4)
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The total entropy change is then
T T
ASror = MgscsIn _ + Mwcw In - (5)
Ts Tw

which we know to be positive by the Second Law of Thermodynamics.

Problem 4

e For AB, @ = 0 because the process is adiabatic. Work Wap = [ pdV is
positive.

e Using @ = AE;,; + W, for BC, AE;,; = $NkgAT = 0 because it is
isothermal, and W < 0 because the gas is being compressed, so @ < 0
and heat is leaving the system.

e For CA, W = 0 (the volume is constant), and temperature is increasing,
so (@ > 0 and heat is entering the system.

Point A has the highest temperature, and point B has the lowest. This can

be seen by plotting isotherms, and remembering that for an adiabat p o< =

vV
which falls more quickly than an isotherm, so T4 > Tp.
Carnot efficiency is:
1L
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Ty is just Ty = %. Note that T, = Tg = T, so since AB is adiabatic we
have:
¥ Pa
PAVA :PB(ZVA)W = PB:27"/ (7)



Hence Tp = £ 5}‘4’3 = Zfﬁ‘f -4 which gives:
1 1y

The only heat flow in is along CA and is given by Q;n = nCyAT =
§nR(Ta — To) = 724nRT4 (1 -2"77) = A5 PaVa(1 — 2'77) where we have
used the relation between d and  on the formula sheet. The work done during
AB is:

1
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d
Wap = —AEin = —5nR(Ts —Ta) = PAVa(1=27). (9

The work done during the isothermal compression BC' is:

Vi
WBC = ’I’LRTC In (V,B> = —21_’YPAVA In 2. (10)
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Finally then the efficiency is:

o Wer _ PaVy (ﬁ(l —2l=7) — 217y 2)

Qin PAVAﬁ(l —21=7)

which can be written
2177(y — 1) In2

—1—
¢ 1-21)



a)

The electric field on the axis is

Setting this equal to zero gives

(Q1 — Q2)2* — 2Qrax + Q1a* =0

The solution to this is

_ 200, * V4a2Q? — 4(Q1 — Q2)Q1a2 _
2(Qh — Q2) Q1 — Q2

We take the solution with the + sign as we want an answer > 0.
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b)

The electric field of a point charge has no zeros so the force of a point charge on another cannot be zero.
The force of Q3 on Q2 will be

2
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27 Yrega? VQ1— Q2  4rmepa? Q2
c)

The force of Q3 on Q1 will be

2
7o @1Qs < V@1 )2 (i) = — @@s [ (@)
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d)

We need Fb; to be equal in magnitude to the answer in part ¢ (or equivalently Fi5 to be equal in magnitude
to the answer in part b). This is satisfied when

Q1 Q2 Q1 Qs

dmeg a?  4dmey P?

This means

Qs = %wa N

So we need

Q5 — Q201
(VQ1 — VQ2)?



