
 Page 1/20

University of California, Berkeley
College of Engineering

Computer Science Division  EECS

Spring 2015

John Kubiatowicz

Midterm I
SOLUTIONS

March 11th, 2015
CS162: Operating Systems and Systems Programming

Your Name:

SID Number:

Discussion
Section:

General Information:
This is a closed book exam. You are allowed 1 page of hand-written notes (both sides). You
have 3 hours to complete as much of the exam as possible. Make sure to read all of the questions
first, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible. On
programming questions, we will be looking for performance as well as correctness, so think through
your answers carefully. If there is something about the questions that you believe is open to
interpretation, please ask us about it!

Problem Possible Score

1 18

2 18

3 24

4 20

5 20

Total 100

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 2/20

[This page left for ]

3.141592653589793238462643383279502884197169399375105820974944

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 3/20

Problem 1: TRUE/FALSE [18 pts]
In the following, it is important that you EXPLAIN your answer in TWO SENTENCES OR LESS
(Answers longer than this may not get credit!). Also, answers without an explanation GET NO
CREDIT.
Problem 1a[2pts]: The kernel on a multiprocessor can use the local disabling of interrupts (within
one CPU) to produce critical sections between the OSs on different CPUs.

 True / False
Explain: Disabling of interrupts on one CPU does nothing to prevent the execution
of code running on another CPU.

Problem 1b[2pts]: Simultaneous Multithreading is a hardware mechanism that can switch threads
every cycle.

 True / False
Explain: Simultaneous Multithreading switches between threads that are loaded
into the processor and can switch every cycle – in fact, it can even combine instructions
from multiple threads in the same cycle.

Problem 1c[2pts]: In a multi-process HTTP server (like in HW#2), only the child process is
responsible for closing the client socket (e.g. the file descriptor returned by accept()), since the
parent doesn’t know when the child is done using the socket.

 True / False
Explain: The fork() system call duplicates the client socket in both the parent
and child. Consequently, both of them must close their copy of the socket; in fact, the parent
typically closes the client socket immediately after executing the fork() operation.

Problem 1d[2pts]: A user-level library implements each system call by first executing a “transition
to kernel mode” instruction. The library routine then calls an appropriate subroutine in the kernel.

 True / False
Explain: Such a mechanism (transition to kernel mode) would give too much
control to user-level code. Instead, entry into the kernel is carefully controlled through a
system call mechanism that simultaneously transitions into kernel mode while jumping to a
well-defined entry point in the kernel.

Problem 1e[2pts]: A thread can be blocked on multiple condition variables simultaneously.

 True / False
Explain: After the thread calls wait() on the first condition (i.e. while it is still
blocked on the first condition variable), it couldn’t have called the second one yet and
cannot be blocked on the second one.

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 4/20

Problem 1f[2pts]: Floating point numbers are not used in Pintos because floating point operations
are too slow and have rounding issues.

 True / False
 Explain: Floating point numbers are not used in Pintos simply because floating
point registers are not saved/restored during thread switches.

Problem 1g[2pts]: In Pintos, implementing priority scheduling for semaphores will also take care
of priority scheduling for locks and condition variables. This is because locks and condition
variables are implemented using semaphores.

 True / False
 Explain: Since locks and condition variables use queues of semaphores to hold
blocked threads, priority scheduling within semaphores does not provide priority scheduling to
locks or condition variables.

Problem 1h[2pts]: The only way to resolve a resource deadlock is to reboot the system.

 True / False
 Explain: Resource deadlocks can be resolved in other ways such as transactional
abort (/unrolling transactions).

Problem 1i[2pts]: Calls to printf() always enter the kernel to perform an output to stdout.

 True / False
 Explain: printf() is a stream operation that buffers its output inside the user-
level . Consequently, many calls to printf()exit without ever entering the kernel.

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 5/20

Problem 2: Short Answer [18pts]
Problem 2a[3pts]: Name at least two disadvantages of disabling interrupts to serialize access to a
critical section. When does it make sense to use interrupt disable/enable around a critical section?

Some possible answers include:
1) Does not work at user-level (i.e. user-level code cannot disable interrupts).
2) Locks out other hardware interrupts and may cause critical events to be missed.
3) Is a very coarse-grained method of serializing – there ends up being only one such lock for

the whole machine.

It makes sense to disable interrupts at the core of the kernel when either the critical section is
very short or when the arrival of interrupts would actually cause incorrect behavior (such as
during context switching or during the entry/exit of interrupt handlers).

Problem 2b[2pts]: What is the difference between Mesa and Hoare scheduling for monitors? How
does this affect the programming pattern used by programmers (be explicit)?

With Hoare scheduling, a signal() operation from one thread immediately wakes up a
sleeping thread, hands the lock to the sleeping thread, and starts the sleeping thread executing;
control returns to the signaling thread after the signaled thread attempts to release the lock
(which is then handed back to the signaling thread). With Mesa scheduling, the signaling thread
simply placed the signaled thread on the run queue and continues executing with the lock.

The practical consequence is that Mesa-scheduled monitors require programmers to recheck
conditions after waking (typically with a “while” loop):

while (condition not satisfied)
 condition.wait();

With Hoare-scheduled monitors, the “while” statement can often be replaced with an “if”
statement.

Problem 2c[2pts]: What needs to be saved and restored on a context switch between two threads in
the same process? What if we have two different processes?

The registers (integer and floating-point), program counter, condition registers, and any other
execution state for a thread must be saved and restored between context switches. If we are
switching between two different processes, we must additionally save and restore the page table
root pointer and/or segment registers.

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 6/20

Problem 2d[3pts]: Name three ways in which the processor can transition from user mode to
kernel mode. Can the user execute arbitrary code after the transition?

The processor transitions from user mode to kernel mode when (1) the user executes a system
call, (2) the processor encounters an synchronous exception such as divide by zero or page
fault, (3) the processor responds to an interrupt. The user cannot execute arbitrary code
because entry into the kernel is through controlled entry points (not under control of the user).

Problem 2e[2pts]: What is the difference between fork() and exec() on Unix?

The fork() system call creates a new child process whose address space duplicates that of the
parent. In contrast, the exec() system call throws away the contents of a process’ address space
and replaces it by loading an executable (new program) from the filesystem.

Problem 2f[2pts]: List two reasons why overuse of threads is bad (i.e. using too many threads for
different tasks). Be explicit in your answers.

There are a number of reasons that overuse of threads is bad. Some of them include:
1) The overhead of switching between too many threads can waste processor cycles such that

overhead outweighs actual computation (i.e. thrashing).
2) Excessive threading can waste memory for stacks and TCBs
3) The overhead of splitting tasks into threads (the launching/exit process) may not be offset by

the resulting gain in performance from parallelism.

Problem 2g[2pts]: What is the default scheduler in PintOS?

The default scheduler in PintOS round-robin (with quantum = 4).

Problem 2h[2pts]: In PintOS, the code for thread_unblock() contains a comment that says
“This function does not preempt the running thread”. Explain why you should not modify
thread_unblock() in a way that could cause it to preempt the running thread.

Many functions call thread_unblock with the assumption that it can do so and update other data
structures atomically. Specifically, sema_up and potentially whatever wakes up sleeping
threads.

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 7/20

Problem 3: Atomic Synchronization Primitives [24pts]
In class, we discussed a number of atomic hardware primitives that are available on modern
architectures. In particular, we discussed “test and set” (TSET), SWAP, and “compare and swap”
(CAS). They can be defined as follows (let “expr” be an expression, “&addr” be an address of a
memory location, and “M[addr]” be the actual memory location at address addr):

Test and Set (TSET) Atomic Swap (SWAP) Compare and Swap (CAS)

TSET(&addr) {
 int result = M[addr];
 M[addr] = 1;
 return (result);
}

SWAP(&addr, expr) {
 int result = M[addr];
 M[addr] = expr;
 return (result);
}

CAS(&addr, expr1, expr2) {
 if (M[addr] == expr1) {
 M[addr] = expr2;
 return true;
 } else {
 return false;
 }
}

Both TSET and SWAP return values (from memory), whereas CAS returns either true or false.
Note that our &addr notation is similar to a reference in c++, and means that the &addr argument
must be something that can be stored into (an “lvalue”). For instance, TSET could be used to
implement a spin-lock acquire as follows:

 int lock = 0; // lock is free

 // Later: acquire lock
 while (TSET(lock));

CAS is general enough as an atomic operation that it can be used to implement both TSET and
SWAP. For instance, consider the following implementation of TSET with CAS:

 TSET(&addr) {
 int temp;
 do {
 temp = M[addr];
 } while (!CAS(addr,temp,1));
 return temp;
 }

Problem 3a[3pts]:
Show how to implement a spinlock acquire with a single while loop using CAS instead of TSET.
You must only fill in the arguments to CAS below:

 // Initialization
 int lock = 0; // Lock is free

 // acquire lock

 while (!CAS(lock , 0 , 1));

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 8/20

Problem 3b[2pts]:
Show how SWAP can be implemented using CAS. Don’t forget the return value.

 SWAP(&addr, reg1) {

 Object returnvalue;
 do {
 return = M[addr];
 } while (!CAS(addr, returnvalue, reg1));
 Return returnvalue;

 }

Problem 3c[2pts]:
With spinlocks, threads spin in a loop (busy waiting) until the lock is freed. In class we argued that
spinlocks were a bad idea because they can waste a lot of processor cycles. The alternative is to put
a waiting process to sleep while it is waiting for the lock (using a blocking lock). Contrary to what
we implied in class, there are cases in which spinlocks would be more efficient than blocking locks.
Give a circumstance in which this is true and explain why a spinlock is more efficient.

If the expected wait time of the lock is very short (such as because the lock is rarely contested or the
critical sections are very short), then it is possible that a spin lock will waste many fewer cycles than
putting threads to sleep/waking them up. The important issue is that the expected wait time must be less
than the time to put a thread to sleep and wake it up.

Short expected wait times are possible to capitalize on, for instance, in a multiprocessor because waiting
threads can be stalled on other processors while the lock-holder makes progress. Spin-locks are much
less useful in a uniprocessor because the lock-holder is sleeping while the waiter is spinning.

Some people mentioned I/O. However, you would have had to come up with a specific example of locks
in use between a thread and an I/O operation as well as mentioned interrupts for releasing the lock.

We were looking for mention of (1) expected wait time being important, (2) the length of time for putting
locks to sleep relative to the expected wait time of the lock, (3) a viable scenario such as a
multiprocessor.

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 9/20

An object such as a queue is considered “lock-free” if multiple processes can operate on this object
simultaneously without requiring the use of locks, busy-waiting, or sleeping. In this problem, we
are going to construct a lock-free FIFO queue using the atomic CAS operation. This queue needs
both an Enqueue and Dequeue method.

We are going to do this in a slightly different way than normally. Rather than Head and Tail
pointers, we are going to have “PrevHead” and Tail pointers. PrevHead will point at the last
object returned from the queue. Thus, we can find the head of the queue (for dequeuing). If we
don’t have to worry about simultaneous Enqueue or Dequeue operations, the code is
straightforward:

// Holding cell for an entry
class QueueEntry {
 QueueEntry next = null;
 Object stored;

 QueueEntry(Object newobject) {
 stored = newobject;
 }
}

// The actual Queue (not yet lock free!)
class Queue {
 QueueEntry prevHead = new QueueEntry(null);
 QueueEntry tail = prevHead;

 void Enqueue(Object newobject) {
 QueueEntry newEntry = new QueueEntry(newobject);
 QueneEntry oldtail = tail;
 tail = newEntry;
 oldtail.next = newEntry;
 }

 Object Dequeue() {
 QueueEntry oldprevHead = prevHead;
 QueueEntry nextEntry = oldprevHead.next;
 if (nextEntry == null)
 return null;
 prevHead = nextEntry;
 return nextEntry.stored;
 }
}

Problem 3d[3pts]:
For this non-multithreaded code, draw the state of a queue with 2 queued items on it:

next

stored

O1

next

null

next

stored

O2

prevHead tail

next

stored

O1

next

null

next

stored

O2

next

stored

O1

next

stored

next

stored

O1

next

null

next

null

next

stored

O2

next

stored

next

stored

O2

prevHead tail

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 10/20

Problem 3e[3pts]: For each of the following potential context switch points, state whether or not a
context switch at that point could cause incorrect behavior of Enqueue(); Explain!

 void Enqueue(Object newobject) {
1 QueueEntry newEntry = new QueueEntry(newobject);
2 QueueEntry oldtail = tail;
3 tail = newEntry;
 oldtail.next = newEntry;
 }

Point 1: No. Construction of a QueueEntry is a purely local operation (and does not touch shared state in
any way).

Point 2: Yes. An intervening Enqueue() operation will move the shared variable “tail” (and enqueue
another object). As a result, the subsequent “tail=newEntry” will overwrite the other entry.

Point 3: No. At this point in the execution, only the local thread will ever touch “oldtail.next” (since we
have moved the tail). Thus, we can reconnect at will. People who worried that the linked list is
“broken” until this operation can relax. The worse that will happen is that the list appears to be
shorter than it actually is until execution of “oldtail.next=newEntry,” at which point the new entry
becomes available for subsequent dequeue.

Problem 3f[4pts]: Rewrite code for Enqueue(), using the CAS() operation, such that it will work
for any number of simultaneous Enqueue and Dequeue operations. You should never need to busy
wait. Do not use locking (i.e. don’t use a test-and-set lock). The solution is tricky but can be
done in a few lines. We will be grading on conciseness. Do not use more than one CAS() or more
than 10 lines total (including the function declaration at the beginning). Hint: wrap a do-while
around vulnerable parts of the code identified above.

 void Enqueue(Object newobject) {
 QueueEntry newEntry = new QueueEntry(newobject);

 // Insert code here

 // Here, ‘tail’ is the shared variable that needs to be
 // protected by CAS. We must atomically swap in ‘newEntry’
 // to ‘tail’, giving us the old value so that we can link
 // it to the new item.

 QueueEntry oldtail;
 do {
 oldtail = tail; // Tentative pointer to tail
 } while {!CAS(tail,oldtail,newEntry);
 oldtail.net = newEntry;

 }

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 11/20

Problem 3g[3pts]: For each of the following potential context switch points, state whether or not a
context switch at that point could cause incorrect behavior of Dequeue(); Explain! (Note: Assume
that the queue is not empty when answering this question, since we have removed the null-queue
check from the original code):

 Object Dequeue() {
1 QueueEntry oldprevHead = prevHead;
2 QueueEntry nextEntry = oldprevHead.next;
3 prevHead = nextEntry;
 return nextEntry.stored;
 }

Point 1: Yes. The problem is that an intervening Dequeue() could end up getting the same entry ‘nextEntry’
that we are returning; consequently we end up dequeing the same entry multiple times.

Point 2: Yes. The problem is that an intervening Dequeue() could end up getting the same entry ‘nextEntry’
that we are returning; consequently we end up dequeing the same entry multiple times.

Point 3: No. The nextEntry has already been detached from the queue and is purely local. Thus, all that we
are doing is removing the stored value from nextEntry for returning it.

Problem 3h[4pts]: Rewrite code for Dequeue(), using the CAS() operation, such that it will work
for any number of simultaneous Enqueue and Dequeue operations. You should never need to busy
wait. Do not use locking (i.e. don’t use a test-and-set lock). The solution can be done in a few
lines. We will be grading on conciseness. Do not use more than one CAS() or more than 10 lines
total (including the function declaration at the beginning). You should correctly handle an empty
queue by returning “null”. Hint: wrap a do-while around vulnerable parts of the code identified
above and add back the null-check from the original code.

 Object Dequeue() {

 // Insert code here

 // Here, ‘prevHead’ is the shared variable that needs to be
 // protected by CAS. We must atomically grab the value of
 // prevHead.next and swap it into prevHead. The CAS lets
 // us do this operation by making sure that prevHead is
 // still equal to oldprevHead at the time that we swap
 // in prevHead.next. Note that we have included a check to
 // handle empty queues (not required for your solution)

 QueueEntry oldprevHead, nextEntry;
 do {
 oldprevHead = prevHead;
 nextEntry = oldprevHead.next;
 if (nextEntry == null) // handle empty queue
 return null;
 } while (!CAS(prevHead, oldprevHead, nextEntry));
 return oldprevHead.stored;
 }

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 12/20

 Problem 4: Scheduling and Deadlock [20 pts]
Problem 4a[2pts]: How could a priority scheduler be used to emulate Earliest Deadline First
(EDF) scheduling? Would computing of priorities be an expensive operation (assume that we
schedule periodic tasks characterized by period T and computational time of C)? Explain.

Current tasks must be sorted by deadline (i.e. “earliest deadline first”), then priorities assigned
to these tasks in order of deadline, with a unique priority for each task and highest priority to
the earliest deadline. This process of sorting and priority assignment must happen every time a
new instance of a realtime task arrives (i.e. every T time units for every task’s value of T).
Priorities do not have to be changed when a task finishes.

Problem 4b[2pts]: What is a multi-level feedback scheduler and how can it approximate SRTF?

A multi-level feedback scheduler is one that includes multiple queues sorted in a priority order.
Each queue (except for the highest-priority queue) is fed from the immediate queue of the next
highest priority. New tasks are placed into the highest-priority queue. In addition to scheduling
queues by priority, each queue can have its own scheduling policy or variation of a scheduling
policy (such as round robin with different quantum). When an thread computes for too long
(i.e. its quantum runs out), it is placed on the next lower-priority queue. When a thread
finishes, it either moves up to the next higher-priority queue or into the top-level queue. This
approximates SRTF because long-running tasks tend to get lower priority (and short-running
tasks get higher priority).

Problem 4c[3pts]: What is priority donation? What sort of information must the OS track to allow
it to perform priority donation? Is priority donation targeted at preventing a deadlock or a
livelock?

Priority donation is a process by which a thread blocked on a synchronization construct (e.g. a
lock) “donates” its priority to the holder of that synchronization construct (in order to make
sure that there is no priority inversion, i.e that the blocking thread does not end up waiting for a
thread of lower priority – which might itself be blocked). The OS must keep track of which
threads are currently holding locks and which others are waiting on locks (of course it must
already do the latter). Priority donation is targeted at preventing a livelock, since there is not
necessarily a cyclic dependency.

Problem 4d[3pts]: Suppose that you utilize a scheme that schedules threads within a process at
user level. Why might a naïve scheduling scheme run into problems when accessing I/O? Can the
operating system help resolve this problem? Explain

Because a naïve scheme would utilize one “kernel” thread for all of the user-level threads.
Then, if any of the threads were to do a system call that blocked on I/O, all other threads would
be blocked as well. One way for the operating system to help would be to return a new kernel
thread to the process for every thread that is put to sleep in the kernel. This idea is typically
called “scheduler activations.” As a result, even if a thread blocks in the kernel, the process
will always retain a running thread which it can be utilized to scheduler user-level thread.

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 13/20

Pwnage Games, a fairly unknown arcade in Downtown Berkeley, decided to purchase Super Smash
Bros. for Wii U -- a popular fighting video game -- in the hope that it would draw customers to the
business. However, due to limited resources, the store could only buy one copy of the game.
Luckily, the owners know Gill Bates -- a Cal EECS undergrad -- who offers her help in exchange
for free arcade credits. Her job is to allow multiple consoles to play the game at the same time.
Thanks to her hacking skills, Gill completes the task in no time, but she is forced to impose some
conditions on the gameplay:
 - each console only allows for two players to fight at a time;
 - the same character cannot be used by more than one player at a time.

The enforcement of these conditions is handled after character selection. That is, all fighters appear
available at all times, and the following function loads the fight. Each character has a global
fighter_t* representing it across consoles.

void smash (fighter_t* first, fighter_t* second)
{
 pthread_mutex_lock (&first->lock);
 pthread_mutex_lock (&second->lock);
 fight (first, second);
 pthread_mutex_unlock (&second->lock);
 pthread_mutex_unlock (&first->lock);

}

Problem 4e[4pts]: Despite Gill’s effort, her algorithm has an obvious flaw: it can lead to deadlock!
Present an example of how this can happen. List the four conditions for deadlock and show how
they are satisfied by this example:

Simple case: two consoles request the same two players, but in reverse order. In this case, the
“first” and “second” arguments to smash() at each console are reversed. Consequently, first
console (Console #1) locks Player A and is waiting for Player B while the second console
(Console #2) locks Player B and is waiting for Player A. This is a cycle that will never resolve.

1) Mutual Exclusion: Each player can be owned by only one console at a time.
2) Hold and Wait: The smash() function for console #1 in this example is holding one

resource (player A) while it is waiting for another resource (player B). A similar argument
applies to the smash() function for console #2 (with resources in reverse order).

3) No Premption: Resources are only released by the owner (never preempted).
4) Circular wait: We have a circular wait since Console #1 (T1) is waiting for Console #2 (T2)

which is waiting for Console #1 (T1).

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 14/20

Problem 4f[3pts]: Redesign the smash() function to avoid deadlock. Write your new version in
the space below. Which of the four conditions are now missing? Name one downside of your
approach.

We can fix this problem by introducing a global lock that is acquired before any players are
acquired:

void smash (fighter_t* first, fighter_t* second)
{
 pthread_mutex_lock (&global_lock);
 pthread_mutex_lock (&first->lock);
 pthread_mutex_lock (&second->lock);
 pthread_mutex_unlock (&global_lock);
 fight (first, second);
 pthread_mutex_unlock (&second->lock);
 pthread_mutex_unlock (&first->lock);

}

This prevents deadlock by removing the circular wait condition: threads only wait for either (1)
the global lock, which means that they are waiting on some thread trying to acquire its players
or (2) the one thread that has acquired the global lock may be waiting to acquire one of its
players which can only be owned by a console that is fighting (and which will eventually release
this player). Consequently, the wait graph is a tree.

Note that a downside of this “fix” is that it could delay unrelated fights from occurring. For
instance, if one console is playing with Player A and B, a second one is waiting for Player A,
then subsequent consoles are unable to play – even if they are interested in Players C and D
(for instance). One could release the global lock after the last unlock (at the end of the smash()
function), but this would introduce additional waiting.

Note: solutions involving busywaiting (such as use of trylock()) were not given full credit.

Problem 4g[3pts]: Explain how the Banker’s algorithm could prevent the deadlock identified in
Problem (4e) and what changes would need to be made to the code to support it. Clearly identify
the behavior that would result, and why the four conditions for deadlock are not simultaneously
satisfied. Would this solution be better or worse than your solution to Problem (4f)?

The bankers algorithm would prevent deadlock because it would never grant either Player A to
Console #1 or Player B to Console #2 if it would result in deadlock. The changes to the code
from (4e) would involve (1) declaring which players a thread was interested in before trying to
acquire them (i.e. at the beginning of smash()) , changing the mutex_lock code to keep track
of all acquired resources and to perform the Banker’s algorithm before every grant operation
and put a requesting thread to sleep if any proposed acquisition would introduce deadlock. As
already stated, this type of tracking would prevent cycles from forming by preventing the
acquisition of any resource that would form a cycle. This solution would be better than the
solution in (4f), since it would never interfere with acquisition of unrelated players.

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 15/20

[This page intentionally left blank]

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 16/20

Problem 5: Address Translation [20 pts]
Consider a multi-level memory management scheme with the following format for virtual
addresses:

Virtual Page #
(10 bits)

Virtual Page #
(10 bits)

Offset
(12 bits)

Virtual addresses are translated into physical addresses of the following form:

Physical Page #
(20 bits)

Offset
(12 bits)

Page table entries (PTE) are 32 bits in the following format, stored in big-endian form in memory
(i.e. the MSB is first byte in memory):

Physical Page #
(20 bits)

OS
Defined
(3 bits)

0

L
arge

P
age

D
irty

A
ccessed

N
ocache

W
rite

T
hrough

U
ser

W
riteable

V
alid

Here, “Valid” means that a translation is valid, “Writeable” means that the page is writeable, “User”
means that the page is accessible by the User (rather than only by the Kernel). Note: the phrase
“page table” in the following questions means the multi-level data structure that maps virtual
addresses to physical addresses.

Problem 5a[2pts]: How big is a page? Explain.

Pages are 4K in size, since the offset is 12 bits (212 = 4096)

Problem 5b[4pts]: Draw a picture of the page table. What good property(s) result from dividing
the address into three fields in this way (i.e. 32 bits = 10bits + 10bits + 12bits)?

One really nice property resulting from this division (and the size of the PTE) is that every piece of
the page-table is the same size as the pages; consequently, the OS could “page out the page table”

Physical Page
(20 Bits)

Access
Check

Access
Check

Virtual Address

Physical Address

Offset
(12 Bits)

Virtual Index 1
(10 bits)

Virtual Index 2
(10 bits)

Offset
(12 Bits)

Table Base Pointer
(20 Bits)

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 17/20

Problem 5c[2pts]: Suppose that we want an address space with one physical page at the top of the
address space and one physical page at the bottom of the address space. How big would the page
table be (in bytes)? Explain.

To address a physical page at the top and bottom of the address space, we would need at least 3
page table components (the top-level one, and two second-level page table entries). Thus, the
page table would be 3 × 4096 = 12288 bytes.

Problem 5d[2pts]: What is the maximum amount of physical memory that can be addressed by this
page table. Explain.

This page table scheme can address all of physical memory, which is 232 = 4294967296 bytes.
For those of you who thought we were talking about the particular page table organization in
(5c), we would also accept an answer of 2 pages = 8192 bytes.

Problem 5e[10pts]: Assume the memory translation scheme from (5a). Use the Physical Memory
table given on the next page to predict what will happen with the following load/store instructions.
Assume that the base table pointer for the current user level process is 0x00200000.

Addresses in the “Instruction” column are virtual. You should translate these addresses to
physical address (i.e. in middle column), then attempt to execute the specified instruction on the
resulting address. The return value for a load is an 8-bit data value or an error, while the return
value for a store is either “ok” or an error. Possible errors are: invalid, read-only, kernel-only.
Hints: (1) Don’t forget that Hexidecimal digits contain 4 bits! (2) PTEs are 4 bytes!

Instruction Physical Address Result

Load
[0x00001047] 0x00002047 0x50

Store
[0x00C07665]

0xEEFF0665 ok

Store
[0x00C005FF] 0x112205FF ERROR:

read-only
Load

[0x00003012]
0x00004012 0x36

Store
[0x02001345] 0x00002345 ok

Load
[0xFF80078F] 0x0415078F ERROR:

invalid
Load

[0xFFFFF005] 0X00103005 0X66

Test-And-Set
[0xFFFFF006] 0X00103006 0X77

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 18/20

Physical Memory [All Values are in Hexidecimal]
Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F

00000000 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
00000010 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D

….
00001010 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
00001020 40 03 41 01 30 01 31 03 00 03 00 00 00 00 00 00
00001030 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF
00001040 10 01 11 03 31 03 13 00 14 01 15 03 16 01 17 00

….
00002030 10 01 11 00 12 03 67 03 11 03 00 00 00 00 00 00
00002040 02 20 03 30 04 40 05 50 01 60 03 70 08 80 09 90
00002050 10 00 31 01 10 03 31 01 12 03 30 00 10 00 10 01

….
00004000 30 00 31 01 11 01 33 03 34 01 35 00 43 38 32 79
00004010 50 28 36 19 71 69 39 93 75 10 58 20 97 49 44 59
00004020 23 03 20 03 00 01 62 08 99 86 28 03 48 25 34 21

….
00100000 00 00 10 67 00 00 20 67 00 00 30 00 00 00 40 07
00100010 00 00 50 03 00 00 00 00 00 00 00 00 00 00 00 00

…
00103000 11 22 00 05 55 66 77 88 99 AA BB CC DD EE FF 00
00103010 22 33 44 55 66 77 88 99 AA BB CC DD EE FF 00 67

…
001FE000 04 15 00 00 48 59 70 7B 8C 9D AE BF D0 E1 F2 03
001FE010 10 15 00 67 10 15 10 67 10 15 20 67 10 15 30 67

…
001FF000 00 00 00 00 00 00 00 65 00 00 10 67 00 00 00 00
001FF010 00 00 20 67 00 00 30 67 00 00 40 65 00 00 50 07

…
001FFFF0 00 00 00 00 00 00 00 00 10 00 00 67 00 10 30 67

…
00200000 00 10 00 07 00 10 10 07 00 10 20 07 00 10 30 07
00200010 00 10 40 07 00 10 50 07 00 10 60 07 00 10 70 07
00200020 00 10 00 07 00 00 00 00 00 00 00 00 00 00 00 00

…
00200FF0 00 00 00 00 00 00 00 00 00 1F E0 07 00 1F F0 07

…

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 19/20

 [This page intentionally left blank]

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 20/20

[This page left for scratch]

