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1 Problem 1

a) This wire can be thought of as two resistors in series where Ry = ,01%1
and Ry = pQ% The Equivalent resistance is
Req = pllz1 + PQ% (1)
b) In order to calculate the ratio of V/V{), we must first note that the part
of the wire submerged in helium can be considered as the second resistor
with ps = 0. This means that R, is

l—x

Reg = 2 (2)
l—xl

= plTi (3)
Ro(l — x)

= 1 )

where Ry = ,01% and represents the resistance of the wire when the tank is
Ro(l—x)

empty. This means that Vo = IpRy and V' = Ip=-;— and the fraction
I()R() l—x
ViV, = —— 5
/Vo IRy | 5)
T
= (-7 (6)
= (1-1/), (7)

where f = 7.



2 Problem 2

a)The equivalent resistance is found by treating the two resistors in series
and adding them together: R, = R1+Rs = 2R. The equivalent capacitance
is found by treating the two capacitors in parallel: Ceq = C1 + Co = 2C.

b) The differential Equation of of the circuit is

Q | Q

— R, 8
€ th+ceq ()
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where I = £.

¢)When the circuit is initially closed, at t=0, there is very little charge on
the plates of the capacitor(Q=0) and thus very little voltage, V. = Q/C = 0.
Although there is initially no charge or voltage across the capacitor, charge
will almost instantly flow to the capacitor once the circuit is closed. Thus,
there is current at t=0. Based on I and V, we can conclude that the capacitor
acts like a short for t close to t=0, so it could be replaced by an ideal wire,
which means

9

I= & (9)
g
= o= (10)

A capacitor will continue to collect charge until Q = Qq: and the
voltage across the capacitor is equal to the voltage of the battery, Vo =
Q/C = ¢ at t = co . At this time there is no more charge motion because
the capacitor has reached its maximum charge, so [=0. At ¢t = oo, enough
time will have passed for the voltage across the capacitor to be the same as
the voltage at the battery. This means that based on I and V, the capacitor
acts like an open circuit.



Problem 3

a) Let M be any point at a radial distance R; < r < R;. Because L >> Ry, the field
in this region is well-approximated by that of an infinite cylinder. By symmetry, the
electric field cannot depend on the longitudinal or angular coordinates (z, ) and must
point in the 7 direction. Using the Gaussian surface sketched in Fig. 1, the E-field is
perpendicular to the ends of the cylinder and normal to the curved surface. Gauss’s
law in integral form therefore tells us that
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€0

|E|27trL = Q
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Thus we see that when R; < 7 < Ry
B Q/L
27egr
Note thatif r < Ry orr > Ry, Qen = 0so the E-field vanishes except when R; < r < Ra.

7.

b) Since we have already determined the electric field, the potential difference between
the surfaces is best found by performing a line integral.
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FIGURE 1. Gaussian surfaces for finding the electric field inside a cylin-
drical capacitor.
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FIGURE 2. Equivalent circuit for determining the capacitance when filled
with two different dielectrics.

c) Capacitance is defined as C = Q/V. We plug in the result of part (b) to find that, for
this geometry,
27megL

" In(Ry/Ry)

d) This arrangement of dielectrics is mathematically equivalent to the circuit with two
capacitors in series shown in Fig. 2. Recall that a dielectric increases the capacitance as
C = K(y. Using this fact and the results of part (b), we see that

C = 2ne0Lm(II§;{d>
K
C, = 27T€0Lln(R§2rd>

Applying the rule for adding capacitances in series we get

1 1\ !
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= 2megL (ln <Rgd> + o (R?i» )
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For sanity, we can verify that this answer behaves as expected when d = R, — R; or
d=0.

= 27T€0L



Problem 4

We will need the electric potential at a height z along the symmetry axis. This is found in
a straightforward way by integrating. I use the convention that V' = 0 when infinitely far
from the charged disk.

V(z) = /de / /2” ordodr _ R g 27r dr
ViZ+22 Do V22

:27‘(Uk/0 mdr=27t0k<\/ R2+ZZ—Z>

You can verify that this makes sense in the limit z — co. Now we apply conservation of
energy. The initial energy will be purely potential, and is zero by the convention chosen
above. The final energy is thus

KE(z) + PE(z) = KE(o0) + PE(c0) =0
KE(z) = —PE(z)
KE(z) = eV(z)

KE(z) = 2mtkoe (\/ R? 422 — z)




Problem 5
a)

We take a gradient to find the field.
L - av. g _,. (1 1\. q¢ _..{1 1\.
E=-VV(r)=—p=— ¢7/o| 4 _Jp=_2 /o=
vv(r) dr 471'606 (ar + 1"2) " 471'607’6 (a + 7’) "
b)

At a constant r, the electric field is a constant. Thus, the flux integral is trivial. Note that the outward
normal, which is the direction of dA points along 7. We also have that the surface area of a sphere of
radius 7 is 4mr2.

L ., 1 1
Sp(r) = %E -dA = |E|4mr? = 4 r/a < + > arr? = Lo-r/a (1 + Z)
4dmeor a €0 a
c)
By Gauss’s law,
@E(r) _ Qtot
€0

So we get that

Qrot = €0Pp(r) = qe"/" (1 + 2)

As r — oo, we get that Qi — 0. We can interpret this as the total charge of an atom being neutral
(the proton charges and the electron charges cancel out).

d)

We see that for a negative charge d@ in a shell of thickness dr, (note p is constant across the surface as
we told so in the first paragraph of the program)

dQ = pdV = panridr

We also have that QQ = Qo+ — q, with ¢ being the positive charge. Since the positive charge is constrained
to the center where we are not trying to find the field it will be independent of r and thus, we get that

% = %. This allows us to plug in the answer from the previous part.
1 dQies q re /e B e /e
P ar ~ @@ Yamadr

Which is valid for all points r > a where there is no positive charge.



