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1 Problem 1

a) This wire can be thought of as two resistors in series where R1 = ρ1
l1
A

and R2 = ρ2
l2
A
. The Equivalent resistance is

Req = ρ1
l1
A

+ ρ2
l2
A

(1)

b) In order to calculate the ratio of V/V0, we must first note that the part
of the wire submerged in helium can be considered as the second resistor
with ρ2 = 0. This means that Req is

Req = ρ1
l − x

A
(2)

= ρ1
l − x

A

l

l
(3)

=
R0(l − x)

l
, (4)

where R0 = ρ1
l
A

and represents the resistance of the wire when the tank is

empty. This means that V0 = I0R0 and V = I0
R0(l−x)

l
and the fraction

V/V0 =
I0R0

I0R0

l − x

l
(5)

= (1−
x

l
) (6)

= (1− f), (7)

where f = x
l
.
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2 Problem 2

a)The equivalent resistance is found by treating the two resistors in series
and adding them together: Req = R1+R2 = 2R. The equivalent capacitance
is found by treating the two capacitors in parallel: Ceq = C1 + C2 = 2C.

b) The differential Equation of of the circuit is

ε = Req
dQ

dt
+

Q

Ceq

(8)

where I = dQ
dt
.

c)When the circuit is initially closed, at t=0, there is very little charge on
the plates of the capacitor(Q=0) and thus very little voltage, Vc = Q/C = 0.
Although there is initially no charge or voltage across the capacitor, charge
will almost instantly flow to the capacitor once the circuit is closed. Thus,
there is current at t=0. Based on I and V, we can conclude that the capacitor
acts like a short for t close to t=0, so it could be replaced by an ideal wire,
which means

I =
ε

Req

(9)

=
ε

2R
. (10)

A capacitor will continue to collect charge until Q = Qmax and the
voltage across the capacitor is equal to the voltage of the battery, VC =
Q/C = ε at t = ∞ . At this time there is no more charge motion because
the capacitor has reached its maximum charge, so I=0. At t = ∞, enough
time will have passed for the voltage across the capacitor to be the same as
the voltage at the battery. This means that based on I and V, the capacitor
acts like an open circuit.

2



Problem 3

a) Let M be any point at a radial distance R1 < r < R2. Because L ≫ R2, the field
in this region is well-approximated by that of an infinite cylinder. By symmetry, the
electric field cannot depend on the longitudinal or angular coordinates (z, θ) and must
point in the r̂ direction. Using the Gaussian surface sketched in Fig. 1, the E-field is
perpendicular to the ends of the cylinder and normal to the curved surface. Gauss’s
law in integral form therefore tells us that

∮

~E · d~A =
Qen

ǫ0

|~E|2πrL =
Q

ǫ0
.

Thus we see that when R1 < r < R2

~E =
Q/L

2πǫ0r
r̂.

Note that if r < R1 or r > R2, Qen = 0 so the E-field vanishes except when R1 < r < R2.

b) Since we have already determined the electric field, the potential difference between
the surfaces is best found by performing a line integral.

|∆V| =
∣

∣

∣

∣

∫

~E · d~l

∣

∣

∣

∣

=
Q/L

2πǫ0

∣

∣

∣

∣

∫ R2

R1

r̂

r
· r̂dr

∣

∣

∣

∣

=
Q/L

2πǫ0

∣

∣

∣

∣

∫ R2

R1

dr

r

∣

∣

∣

∣

=
Q/L

2πǫ0
ln (R2/R1)

FIGURE 1. Gaussian surfaces for finding the electric field inside a cylin-
drical capacitor.



FIGURE 2. Equivalent circuit for determining the capacitance when filled
with two different dielectrics.

c) Capacitance is defined as C ≡ Q/V. We plug in the result of part (b) to find that, for
this geometry,

C =
2πǫ0L

ln (R2/R1)

d) This arrangement of dielectrics is mathematically equivalent to the circuit with two
capacitors in series shown in Fig. 2. Recall that a dielectric increases the capacitance as
C = KC0. Using this fact and the results of part (b), we see that

C1 = 2πǫ0L
K1

ln
(

R1+d
R1

)

C2 = 2πǫ0L
K2

ln
(

R2
R1+d

)

Applying the rule for adding capacitances in series we get

C =

(

1

C1
+

1

C2

)−1

= 2πǫ0L





ln
(

R1+d
R1

)

K1
+

ln
(

R2
R1+d

)

K2





−1

= 2πǫ0L
K1K2

K2 ln
(

R1+d
R1

)

+ K1 ln
(

R2
R1+d

)

For sanity, we can verify that this answer behaves as expected when d = R2 − R1 or
d = 0.



Problem 4

We will need the electric potential at a height z along the symmetry axis. This is found in
a straightforward way by integrating. I use the convention that V = 0 when infinitely far
from the charged disk.

V(z) =
∫

k dQ

r
= k

∫ R

0

∫ 2π

0

σ r dθdr√
r2 + z2

= k

∫ R

0

σ 2πr dr√
r2 + z2

= 2πσk

∫ R

0

r√
r2 + z2

dr = 2πσk
(
√

R2 + z2 − z
)

You can verify that this makes sense in the limit z → ∞. Now we apply conservation of
energy. The initial energy will be purely potential, and is zero by the convention chosen
above. The final energy is thus

KE(z) + PE(z) = KE(∞) + PE(∞) = 0

KE(z) = −PE(z)

KE(z) = eV(z)

KE(z) = 2πkσe
(
√

R2 + z2 − z
)



Problem 5

a)

We take a gradient to find the field.

~E = −~∇V (r) = −
dV

dr
r̂ =

q

4πǫ0
e−r/a

(

1

ar
+

1

r2

)

r̂ =
q

4πǫ0r
e−r/a

(

1

a
+

1

r

)

r̂

b)

At a constant r, the electric field is a constant. Thus, the flux integral is trivial. Note that the outward
normal, which is the direction of d ~A points along r̂. We also have that the surface area of a sphere of
radius r is 4πr2.

ΦE(r) =

∮

~E · d ~A = | ~E|4πr2 =
q

4πǫ0r
e−r/a

(

1

a
+

1

r

)

4πr2 =
q

ǫ0
e−r/a

(

1 +
r

a

)

c)

By Gauss’s law,

ΦE(r) =
Qtot

ǫ0

So we get that

Qtot = ǫ0ΦE(r) = qe−r/a
(

1 +
r

a

)

As r → ∞, we get that Qtot → 0. We can interpret this as the total charge of an atom being neutral
(the proton charges and the electron charges cancel out).

d)

We see that for a negative charge dQ in a shell of thickness dr, (note ρ is constant across the surface as
we told so in the first paragraph of the program)

dQ = ρdV = ρ4πr2dr

We also have that Q = Qtot−q, with q being the positive charge. Since the positive charge is constrained
to the center where we are not trying to find the field it will be independent of r and thus, we get that
dQ
dr = dQtot

dr . This allows us to plug in the answer from the previous part.

ρ =
1

4πr2
dQtot

dr
= −

q

4πr2
re−r/a

a2
= −q

e−r/a

4πa2r
.

Which is valid for all points r > a where there is no positive charge.
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