
PHYSICS 7B, Lectures 1 & 3 – Spring 2015 
Midterm 2, C. Bordel 
Monday, April 6, 2015 

7pm-9pm 
 

Make sure you show all your work and justify your answers  

in order to get full credit. 
 

 
 

Problem 1 – Resistance & current (10 pts) 
 

Two cylindrical wires of respective resistivities 1 and 2, respective lengths l1 and 

l2, and same diameter d are connected to each other, as shown in Figure 1a.  

 
a)  Calculate the resistance R of the 2 connected wires made of different materials. 
 
This can be used to monitor the level of liquid helium in a storage tank. A niobium-

titanium (Nb-Ti) wire of length l spans the entire height of the tank, and an 

electronic circuit maintains a constant electrical current at all times in the wire. A 
voltmeter monitors the voltage V across the wire, as shown in Figure 1b.  Because 
Nb-Ti is superconducting at low temperatures, the portion of the wire immersed in 
liquid helium (length x) therefore has zero resistivity. The portion above the liquid 

always has nonzero resistivity . 
 
b) Calculate the ratio V/V0, where V0 is the voltage measured when the tank is 
empty. Give your answer in terms of the fraction f of the tank which is filled with 
liquid helium. 
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Problem 2 – DC circuit (15 pts) 
 
Two resistors of resistance R and two capacitors of capacitance C are combined as 
shown in Figure 2 to form a circuit, where the battery sources a voltage E.  

 

a) Draw a simplified version of that electrical circuit using only one resistor of 
equivalent resistance Req and one capacitor of equivalent capacitance Ceq. Express 
Req and Ceq as a function of R and C. 

b) Before the battery is connected to the circuit, the capacitors are uncharged.  
Establish the differential equation satisfied by the charge Q accumulating on the 
equivalent capacitor’s plates, using Req and Ceq. You don’t need to solve the equation!  

c) Determine, without any calculation, the current I going through the equivalent 
circuit immediately after the battery is connected to the circuit, and then after an 
infinite amount of time.  
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Problem 3– Capacitor & dielectric (20 pts) 
 
Two coaxial cylindrical conducting shells of identical length L and respective radii 
R1 and R2 (R2>R1) carry uniformly distributed electric charge +Q and –Q 

respectively (Q>0). They are separated by a vacuum of permittivity 0.  
You may assume that L>> R2. A cross-section view is presented in Figure 3a. 
 
a) Calculate the electric field created at any point M located at a radial distance r 

from the symmetry axis. Show your work! 
b) Calculate the absolute value of the voltage between the 2 conducting shells. 
c) Determine the capacitance of this cylindrical capacitor. 
d) Calculate the capacitance if the gap between the 2 shells is filled by 2 successive 

dielectric materials of dielectric constant K1 and thickness d for the inner one, 
and dielectric constant K2 for the outer one, as sketched in Figure 3b. 

 
 
 
 
 
 
       
 
 
 

 
 
 

 

 
Figure 3: cross-section views 

 
 
Problem 4 – Electric potential & potential energy (20 pts) 
 

 

An electron of mass m and electric charge -e, initially at rest, is released from 
infinity along the symmetry axis of a uniformly charged disk of radius R. The flat 

disk carries positive surface charge distribution . Calculate the kinetic energy of 
the electron at distance z from the center of the disk (Fig.4). You may assume that 
the gravitational potential energy is negligible. 
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Problem 5 – Electric field & potential (25 pts) 

 
We assume that atoms can be modeled by considering a spherical negative charge 

distribution (r) extending beyond the radial distance a (a >0), around the nucleus 
of charge q (q>0).  
At distance r from the center O of the atom, the electric potential is given by the 
following expression: 
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a) Determine the direction and magnitude of the electric field )(rE  created by this 

charge distribution at a distance r from the origin.  

b) Calculate the flux (r)ΦE  of the electric field through a sphere of center O and 

radius r. 
c) Calculate the electric charge Qtot enclosed in the sphere of center O and radius r. 

What is the limit of Qtot when r→∞? Interpret your result. 

d) Determine the negative charge distribution (r). 
Hint:  it might be helpful to express the infinitesimal amount of negative charge dQ 
contained in a spherical shell of thickness dr. 
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ẑ

d~l = drr̂ + rdθθ̂ + dzẑ
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