## Make sure you show all your work and justify your answers in order to get full credit.

## Problem 1 - Resistance \& current (10 pts)

Two cylindrical wires of respective resistivities $\rho_{1}$ and $\rho_{2}$, respective lengths $\ell_{1}$ and $\ell_{2}$, and same diameter $d$ are connected to each other, as shown in Figure 1a.
a) Calculate the resistance $R$ of the 2 connected wires made of different materials.

This can be used to monitor the level of liquid helium in a storage tank. A niobiumtitanium ( $\mathrm{Nb}-\mathrm{Ti}$ ) wire of length $\ell$ spans the entire height of the tank, and an electronic circuit maintains a constant electrical current at all times in the wire. A voltmeter monitors the voltage $V$ across the wire, as shown in Figure 1b. Because $\mathrm{Nb}-\mathrm{Ti}$ is superconducting at low temperatures, the portion of the wire immersed in liquid helium (length $x$ ) therefore has zero resistivity. The portion above the liquid always has nonzero resistivity $\rho$.
b) Calculate the ratio $V / V_{0}$, where $V_{0}$ is the voltage measured when the tank is empty. Give your answer in terms of the fraction $f$ of the tank which is filled with liquid helium.


Figure 1

## Problem 2 - DC circuit (15 pts)

Two resistors of resistance $R$ and two capacitors of capacitance $C$ are combined as shown in Figure 2 to form a circuit, where the battery sources a voltage $\varepsilon$.
a) Draw a simplified version of that electrical circuit using only one resistor of equivalent resistance $R_{\text {eq }}$ and one capacitor of equivalent capacitance $C_{\text {eq. }}$. Express $R_{\mathrm{eq}}$ and $C_{\mathrm{eq}}$ as a function of $R$ and $C$.
b) Before the battery is connected to the circuit, the capacitors are uncharged. Establish the differential equation satisfied by the charge $Q$ accumulating on the equivalent capacitor's plates, using $R_{\mathrm{eq}}$ and $C_{\mathrm{eq}}$. You don't need to solve the equation!
c) Determine, without any calculation, the current $I$ going through the equivalent circuit immediately after the battery is connected to the circuit, and then after an infinite amount of time.


Figure 2

## Problem 3- Capacitor \& dielectric (20 pts)

Two coaxial cylindrical conducting shells of identical length $L$ and respective radii $R_{1}$ and $R_{2}\left(R_{2}>R_{1}\right)$ carry uniformly distributed electric charge $+Q$ and $-Q$ respectively $(Q>0)$. They are separated by a vacuum of permittivity $\varepsilon_{0}$.
You may assume that $L \gg R_{2}$. A cross-section view is presented in Figure 3a.
a) Calculate the electric field created at any point $M$ located at a radial distance $r$ from the symmetry axis. Show your work!
b) Calculate the absolute value of the voltage between the 2 conducting shells.
c) Determine the capacitance of this cylindrical capacitor.
d) Calculate the capacitance if the gap between the 2 shells is filled by 2 successive dielectric materials of dielectric constant $K_{1}$ and thickness $d$ for the inner one, and dielectric constant $K_{2}$ for the outer one, as sketched in Figure 3b.


Figure 3: cross-section views

## Problem 4 - Electric potential \& potential energy (20 pts)

An electron of mass $m$ and electric charge $-e$, initially at rest, is released from infinity along the symmetry axis of a uniformly charged disk of radius $R$. The flat disk carries positive surface charge distribution $\sigma$. Calculate the kinetic energy of the electron at distance $z$ from the center of the disk (Fig.4). You may assume that the gravitational potential energy is negligible.


## Problem 5 - Electric field \& potential (25 pts)

We assume that atoms can be modeled by considering a spherical negative charge distribution $\rho(r)$ extending beyond the radial distance $a(a>0)$, around the nucleus of charge $q(q>0)$.
At distance $r$ from the center $O$ of the atom, the electric potential is given by the following expression:

$$
V(r)=\frac{q}{4 \pi \varepsilon_{0} r} e^{-r / a}
$$

a) Determine the direction and magnitude of the electric field $\vec{E}(r)$ created by this charge distribution at a distance $r$ from the origin.
b) Calculate the flux $\Phi_{E}(r)$ of the electric field through a sphere of center $O$ and radius $r$.
c) Calculate the electric charge $Q_{\text {tot }}$ enclosed in the sphere of center $O$ and radius $r$. What is the limit of $Q_{\text {tot }}$ when $\mathrm{r} \rightarrow \infty$ ? Interpret your result.
d) Determine the negative charge distribution $\rho(r)$.

Hint: it might be helpful to express the infinitesimal amount of negative charge $d Q$ contained in a spherical shell of thickness $d r$.

$$
\begin{aligned}
& \vec{F}=\frac{Q_{1} Q_{2}}{4 \pi \epsilon_{0} r^{2}} \hat{r}=\frac{k Q_{1} Q_{2}}{r^{2}} \hat{r} \\
& \vec{F}=Q \vec{E} \\
& \vec{E}=\int \frac{d Q}{4 \pi \epsilon_{0} r^{2}} \hat{r}=\int \frac{k d Q}{r^{2}} \hat{r} \\
& \rho=\frac{d Q}{d V} \\
& \sigma=\frac{d Q}{d A} \\
& \lambda=\frac{d Q}{d l} \\
& \vec{p}=Q \vec{d} \\
& \vec{\tau}=\vec{p} \times \vec{E} \\
& U=-\vec{p} \cdot \vec{E} \\
& \Phi_{E}=\int \vec{E} \cdot d \vec{A} \\
& \oint \vec{E} \cdot d \vec{A}=\frac{Q_{\text {encl }}}{\epsilon} \\
& \Delta U=Q \Delta V \\
& V=-\int \vec{E} \cdot d \vec{l} \\
& V=\int \frac{d Q}{4 \pi \epsilon_{0} r}=\int \frac{k d Q}{r} \\
& \vec{E}=-\vec{\nabla} V \\
& Q=C V \\
& C_{e q}=C_{1}+C_{2}(\text { In parallel }) \\
& \frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}(\text { In series }) \\
& \epsilon=\kappa \epsilon_{0} \\
& C=\kappa C_{0} \\
& U=\frac{Q^{2}}{2 C} \\
& U=\int \frac{\epsilon}{2}|\vec{E}|^{2} d V \\
& I=\frac{d Q}{d t} \\
& \Delta V=I R \\
& R=\rho \frac{l}{A} \\
& \rho(T)=\rho\left(T_{0}\right)\left(1+\alpha\left(T-T_{0}\right)\right) \\
& P=I V \\
& I=\int \vec{j} \cdot d \vec{A} \\
& \vec{j}=n Q \overrightarrow{v_{d}}=\frac{\vec{E}}{\rho} \\
& R_{e q}=R_{1}+R_{2} \text { (In series) } \\
& \frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}(\text { In parallel }) \\
& \sum_{\text {junction }} I=0 \\
& \sum_{\text {loop }} V=0 \\
& y(t)=\frac{B}{A}\left(1-e^{-A t}\right)+y(0) e^{-A t} \\
& \text { solves } \frac{d y}{d t}=-A y+B \\
& y(t)=y_{\max } \cos (\sqrt{A} t+\delta) \\
& \text { solves } \frac{d^{2} y}{d t^{2}}=-A y \\
& \vec{\nabla} f=\frac{\partial f}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\theta}+\frac{\partial f}{\partial z} \hat{z} \\
& d \vec{l}=d r \hat{r}+r d \theta \hat{\theta}+d z \hat{z} \\
& \text { (Cylindrical Coordinates) } \\
& \vec{\nabla} f=\frac{\partial f}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\theta}+\frac{1}{r \sin (\theta)} \frac{\partial f}{\partial \phi} \hat{\phi} \\
& d \vec{l}=d r \hat{r}+r d \theta \hat{\theta}+r \sin (\theta) d \phi \hat{\phi} \\
& \text { (Spherical Coordinates) } \\
& \int_{0}^{\infty} x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}} \\
& \int_{0}^{\infty} x^{2 n} e^{-a x^{2}} d x=\frac{(2 n)!}{n!2^{2 n+1}} \sqrt{\frac{\pi}{a^{2 n+1}}} \\
& \int_{0}^{\infty} x^{2 n+1} e^{-a x^{2}} d x=\frac{n!}{2 a^{n+1}} \\
& \int\left(1+x^{2}\right)^{-1 / 2} d x=\ln \left(x+\sqrt{1+x^{2}}\right) \\
& \int\left(1+x^{2}\right)^{-1} d x=\arctan (x) \\
& \int\left(1+x^{2}\right)^{-3 / 2} d x=\frac{x}{\sqrt{1+x^{2}}} \\
& \int \frac{x}{1+x^{2}} d x=\frac{1}{2} \ln \left(1+x^{2}\right) \\
& \int \frac{x}{\sqrt{1+x^{2}}} d x=\sqrt{1+x^{2}} \\
& \int \frac{1}{\cos (x)} d x=\ln \left(\left|\tan \left(\frac{x}{2}+\frac{\pi}{4}\right)\right|\right) \\
& \int \frac{1}{\sin (x)} d x=\ln \left(\left|\tan \left(\frac{x}{2}\right)\right|\right) \\
& \sin (x) \approx x \\
& \cos (x) \approx 1-\frac{x^{2}}{2} \\
& e^{x} \approx 1+x+\frac{x^{2}}{2} \\
& (1+x)^{\alpha} \approx 1+\alpha x+\frac{(\alpha-1) \alpha}{2} x^{2} \\
& \ln (1+x) \approx x-\frac{x^{2}}{2} \\
& \sin (2 x)=2 \sin (x) \cos (x) \\
& \cos (2 x)=2 \cos ^{2}(x)-1 \\
& \sin (a+b)=\sin (a) \cos (b)+\cos (a) \sin (b) \\
& \cos (a+b)=\cos (a) \cos (b)-\sin (a) \sin (b) \\
& 1+\cot ^{2}(x)=\csc ^{2}(x) \\
& 1+\tan ^{2}(x)=\sec ^{2}(x)
\end{aligned}
$$

