
CS 188
Spring 2015

Introduction to
Artificial Intelligence Midterm 1

• You have approximately 2 hours and 50 minutes.

• The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation. All short answer sections can be successfully answered in a few sentences AT MOST.

First name

Last name

SID

edX username

First and last name of student to your left

First and last name of student to your right

For staff use only:
Q1. Pacman’s Tour of San Francisco /12
Q2. Missing Heuristic Values /6
Q3. PAC-CORP Assignments /10
Q4. k-CSPs /5
Q5. One Wish Pacman /12
Q6. AlphaBetaExpinimax /9
Q7. Lotteries in Ghost Kingdom /11
Q8. Indecisive Pacman /13
Q9. Reinforcement Learning /8
Q10. Potpourri /14

Total /100

1

THIS PAGE IS INTENTIONALLY LEFT BLANK

Q1. [12 pts] Pacman’s Tour of San Francisco
Pacman is visiting San Francisco and decides to visit N different landmarks {L1, L2, . . . , LN}. Pacman starts at L1,
which can be considered visited, and it takes tij minutes to travel from Li to Lj .

(a) [2 pts] Pacman would like to find a route that visits all landmarks while minimizing the total travel time.
Formulating this as a search problem, what is the minimal state representation?

minimal state representation:
The minimal state representation is Pacman’s current location and which landmarks he has visited (boolean
indicators or a set or an unordered list) OR the inverse, which landmarks Pacman has not visited.

(b) [2 pts] Ghosts have invaded San Francisco! If Pacman travels from Li to Lj , he will encounter gij ghosts.

Pacman wants to find a route which minimizes total travel time without encountering more than Gmax ghosts
(while still visiting all landmarks). What is the minimal state representation?

minimal state representation:
The minimal state representation is the visited (or unvisited) landmarks (as above), Pacman’s current landmark
(as above), and the number of ghosts encountered thus far (or the inverse, the number of ghosts that can be
encountered in the future).

(c) [4 pts] The ghosts are gone, but now Pacman has brought all of his friends to take pictures of all the landmarks.
Pacman would like to find routes for him and each of his k − 1 friends such that all landmarks are visited by
at least one individual, while minimizing the sum of the tour times of all individuals. You may assume that
Pacman and all his friends start at landmark L1 and each travel independently at the same speed. Formulate
this as a search problem and fill in the following:

minimal state representation:
The state representation is the landmarks visited by at least one agent, stored as N boolean indicators, a set,
or an unordered list (or the inverse – the unvisited landmarks) and the current location of each of the k agents.

actions between states:
An action can be a single agent moving from one landmark to another or a number of the agents moving from
their respective landmarks to new landmarks. The new landmarks need not be unvisited or unoccupied.

cost function c(s, s′) between neighboring states:
The cost function is the sum of the time traveled by each agent between state s and s′ (or just a single term if
only one agent moves per action)

(d) [4 pts] Pacman would now like to find routes for him and each of his k − 1 friends such that all landmarks
are still visited by at least one individual, but now minimizing the maximum tour time of any individual.
Formulate this as a search problem and fill in the following:

minimal state representation:
The state representation is the landmarks visited and the current location of each agent (both as above), as
well as the tour time for each agent.

actions between states:
An action is when a single agents moves from one landmark to another or some number of the agents move
from their current landmark to another landmark.

cost function c(s, s′) between neighboring states:
Let tmax be the maximum tour time of any individual at state s and t′max be the equivalent at state s′. Then
the cost between s and s′ is t′max − tmax.

3

Q2. [6 pts] Missing Heuristic Values
Consider the state space graph shown below in which some of the states are missing a heuristic value. Determine the
possible range for each missing heuristic value so that the heuristic is admissible and consistent. If this isn’t possible,
write so.

State Range for h(s)

A 6 ≤ h(A) ≤ 6

D 1 ≤ h(D) ≤ 3

E 5 ≤ h(E) ≤ 6

We only need to check for consistency since admissibility is implied by consistency. A consistent heuristic is one such
that h(s) ≤ c(s, s′) + h(s′). For the search graph above, this means that:
For s = A:

h(Start) ≤ c(Start, A) + h(A) =⇒ 6 ≤ h(A)

h(A) ≤ c(A,B) + h(B) =⇒ h(A) ≤ 7

h(A) ≤ c(A,G) + h(F) =⇒ h(A) ≤ 6 to be consistent

For s = D: h(D) ≤ c(D,G) + h(G) =⇒ h(D) ≤ 3

h(B) ≤ c(B,D) + h(D) =⇒ 0 ≤ h(D)

h(F) ≤ c(F,D) + h(D) =⇒ 1 ≤ h(D) to be consistent

For s = E: h(E) ≤ c(E,G) + h(G) =⇒ h(E) ≤ 6

h(C) ≤ c(C,E) + h(E) =⇒ 5 ≤ h(E)

h(E) ≤ c(E,F) + h(F) =⇒ h(E) ≤ 6 to be consistent

4

Q3. [10 pts] PAC-CORP Assignments
Your CS188 TAs have all secured jobs at PAC-CORP. Now, PAC-CORP must assign each person to exactly one
team. The TAs are Alvin (A), Chelsea (C), Lisa (L), Rohin (R), Sandy (S), and Zoe (Z). We would like to formulate
this as a CSP using one variable for each TA. The teams to choose from are:

Team 1: Ghostbusting
Team 2: Pellet Detection
Team 3: Capsule Vision
Team 4: Fruit Processing
Team 5: R&D
Team 6: Mobile

The TAs have the following preferences. Note that some of the teams may not receive a TA and some of the
teams may receive more than one TA.

• Alvin (A) and Chelsea (C) must be on the same team.

• Sandy (S) must be on an even team (2, 4, or 6).

• Lisa (L) must be on one of the last 3 teams.

• Alvin (A) and Rohin (R) must be on different teams.

• Zoe (Z) must be on Team 1 Ghostbusting or Team 2 Pellet Detection.

• Chelsea’s (C) team number must be greater than than Lisa’s (L) team number.

• Lisa (L) cannot be on a team with any other TAs.

(a) [3 pts] Complete the constraint graph for this CSP.

Binary constraints are 1, 4, 6, and 7. Constraint 1 connects A and C. Constraint 4 connects A and R. Constraint
6 connects C and L. Constraint 7 connects L with all other variables.

(b) [2 pts] On the grid below, cross out domains that are removed after enforcing all unary constraints. (The
second grid is a backup in case you mess up on the first one. Clearly cross out the first grid if it should not be
graded.)

A 1 2 3 4 5 6
C 1 2 3 4 5 6
S 1 2 3 4 5 6
L 1 2 3 4 5 6
R 1 2 3 4 5 6
Z 1 2 3 4 5 6

A 1 2 3 4 5 6
C 1 2 3 4 5 6
S 1 2 3 4 5 6
L 1 2 3 4 5 6
R 1 2 3 4 5 6
Z 1 2 3 4 5 6

Unary constraints are constraint 2, 3, and 5. Constraint 2 removes 1, 3, and 5 from the domain of S. Constraint
3 removes 1, 2, and 3 from the domain of L. Constraint 5 removes 3, 4, and 5 from the domain of Z.

(c) [2 pts] When using Minimum Remaining Values (MRV) to select the next variable, which variable should be
assigned after unary constraints are enforced?

A # C # S # L # R Z
Z has the fewest values remaining in it’s domain, so it will be assigned first by MRV.

(d) [3 pts] Assume that the current state of the CSP is shown below. Cross off the values that are eliminated
after enforcing arc consistency at this stage. You should only enforce binary constraints. (The second grid is
back-up. Clearly cross out the first grid if it should not be graded.)

5

A 1 2 3 4 5 6
C 1 4
S 4
L 2 3 4 5 6
R 1 4 5 6
Z 1 2 3 4 5 6

A 1 2 3 4 5 6
C 1 4
S 4
L 2 3 4 5 6
R 1 4 5 6
Z 1 2 3 4 5 6

The arcs that prune values are below.

1. C-L: Constraint 6 removes 1 from C.

2. A-C: Constraint 1 removes 1, 2, 3, 5 and 6 from A.

3. R-A: Constraint 4 removes 4 from R.

4. L-C: Constraint 1 removes 4, 5, and 6 from C.

6

Q4. [5 pts] k-CSPs
Let a k-CSP be a CSP where the solution is allowed to have k variables violate constraints. We would like to modify
the classic CSP algorithm to solve k-CSPs. The classic backtracking algorithm is shown below. To modify it to solve
k-CSPs, we need to change line 15. Note that k is used to denote the number of allowable inconsistent variables and
i is the number of inconsistent variables in the current assignment.

1: function K-CSP-Backtracking(csp, k)
2: return Recursive-Backtracking({}, csp, 0, k)
3: end function

1: function Recursive-Backtracking(assignment, csp, i, k)
2: if assignment is complete then
3: return assignment
4: end if
5: var ← Select-Unassigned-Variable(Variables[csp], assignment, csp)
6: for each value in Order-Domain-Values(var, assignment, csp) do
7: if value is consistent with assignment given Constraints(csp) then
8: add {var = value} to assignment
9: result ← Recursive-Backtracking(assignment, csp, i, k)

10: if result 6= failure then
11: return result
12: end if
13: remove {var = value} from assignment
14: else
15: continue
16: end if
17: end for
18: return failure
19: end function

If each of the following blocks of code were to replace line 15, which code block(s) would yield a correct algorithm
for solving k-CSPS?

For this formulation, we want to only backtrack when more than k variables have violated a constraint. If there are
fewer than k, we can assign the current variable to a constrained value, increment i, and continue the algorithm.
The first code block provides the correct implementation. The second option using a tree structured CSP algorithm
will incorrectly return failure if there is no solution with only i + 1 constraints violated (where i + 1 may be less
than k). The third and fourth option filter the domains of the remaining variables. If a variable’s domain is filtered,
then the recursive-backtracking call will only consider values in the filtered domain rather than values which violate
a constraint, potentially causing the code to miss the solution.

 if i < k then
add {var = value} to assignment
result ← Recursive-Backtracking(

assignment, csp, i+ 1, k)
if result 6= failure then

return result
end if
remove {var = value} from assignment

end if

if i < k then
add {var = value} to assignment
if Is-Tree(Unassigned-Variables[csp]) then

result ← Tree-Structured-CSP-Algorithm(
assignment, csp)

else
result ← Recursive-Backtracking(

assignment, csp, i+ 1, k)
end if
if result 6= failure then

return result
end if
remove {var = value} from assignment

end if

7

if i < k then
add {var = value} to assignment
Filter-Domains-with-Forward-Checking()
result ← Recursive-Backtracking(

assignment, csp, i+ 1, k)
if result 6= failure then

return result
end if
Undo-Filter-Domains-with-Fwd-Checking()
remove {var = value} from assignment

end if

if i < k then
add {var = value} to assignment
Filter-Domains-with-Arc-Consistency()
result ← Recursive-Backtracking(

assignment, csp, i+ 1, k)
if result 6= failure then

return result
end if
Undo-Filter-Domains-with-Arc-Consistency()
remove {var = value} from assignment

end if

None of the code blocks

8

Q5. [12 pts] One Wish Pacman
(a) Power Search. Pacman has a special power: once in the entire game when a ghost is selecting an action,

Pacman can make the ghost choose any desired action instead of the min-action which the ghost would normally
take. The ghosts know about this special power and act accordingly.

(i) [2 pts] Similar to the minimax algorithm, where the value of each node is determined by the game subtree
hanging from that node, we define a value pair (u, v) for each node: u is the value of the subtree if the
power is not used in that subtree; v is the value of the subtree if the power is used once in that subtree.

For the terminal states we set u = v = Utility(State).

Fill in the (u, v) values in the modified minimax tree below. Pacman is the root and there are two ghosts.

Please see the solution of the general algorithm in the next part to see how the u, v values get propagated
up the game tree.

(ii) [4 pts] Complete the algorithm below, which is a modification of the minimax algorithm, to work in the
general case: Pacman can use the power at most once in the game but Pacman and ghosts can have
multiple turns in the game.

9

function Value(state)
if state is leaf then

u← Utility(state)
v ← Utility(state)
return (u, v)

end if
if state is Max-Node then

return Max-Value(state)
else

return Min-Value(state)
end if

end function

function Max-Value(state)
uList← [], vList← []
for successor in Successors(state) do

(u′, v′)← Value(successor)
uList.append(u′)
vList.append(v′)

end for
u← max(uList)
v ← max(vList)
return (u, v)

end function

function Min-Value(state)
uList← [], vList← []
for successor in Successors(state) do

(u′, v′)← Value(successor)
uList.append(u′)
vList.append(v′)

end for

u← min(uList)

v ← max(max(uList),min(vList))

return (u, v)
end function

The u value of a min-node corresponds to the case if Pacman does not use his power in the game subtree
hanging from the current min-node. Therefore, it is equal to the minimum of the u values of the children
of the node.

The v value of the min-node corresponds to the case when pacman uses his power once in the subtree.
Pacman has two choices here - a) To use the power on the current node, or b) To use the power further
down in the subtree.

In case a), the value of the node corresponds to choosing the best among the children’s u values =
max(uList) (we consider u values of children as Pacman is using his power on this node and therefore,
cannot use it in the subtrees of the node’s children).

In case b), Pacman uses his power in one of the child subtrees so we consider the v values of the children,
Since Pacman is not using his power on this node, the current node acts as a minimizer, making the value
in case b) = min(vList)

The v value at the current node is the best of the above two cases.

10

(b) Weak-Power Search. Now, rather than giving Pacman control over a ghost move once in the game, the
special power allows Pacman to once make a ghost act randomly. The ghosts know about Pacman’s power and
act accordingly.

(i) [2 pts] The propagated values (u, v) are defined similarly as in the preceding question: u is the value of
the subtree if the power is not used in that subtree; v is the value of the subtree if the power is used once
in that subtree.

Fill in the (u, v) values in the modified minimax tree below, where there are two ghosts.

Please see the solution of the general algorithm in the next part to see how the u, v values get propagated
up the game tree.

(ii) [4 pts] Complete the algorithm below, which is a modification of the minimax algorithm, to work in the
general case: Pacman can use the weak power at most once in the game but Pacman and ghosts can have
multiple turns in the game.

Hint: you can make use of a min, max, and average function

11

function Value(state)
if state is leaf then

u← Utility(state)
v ← Utility(state)
return (u, v)

end if
if state is Max-Node then

return Max-Value(state)
else

return Min-Value(state)
end if

end function

function Max-Value(state)
uList← [], vList← []
for successor in Successors(state) do

(u′, v′)← Value(successor)
uList.append(u′)
vList.append(v′)

end for
u← max(uList)
v ← max(vList)
return (u, v)

end function

function Min-Value(state)
uList← [], vList← []
for successor in Successors(state) do

(u′, v′)← Value(successor)
uList.append(u′)
vList.append(v′)

end for

u← min(uList)

v ← max(avg(uList),min(vList))

return (u, v)
end function

The solution to this scenario is same as before, except that when considering case a) for the v value
of a min-node, the value of the node corresponds to choosing the average of the children’s u values =
avg(uList)

12

Q6. [9 pts] AlphaBetaExpinimax
In this question, player A is a minimizer, player B is a maximizer, and C represents a chance node. All children
of a chance node are equally likely. Consider a game tree with players A, B, and C. In lecture, we considered how
to prune a minimax game tree - in this question, you will consider how to prune an expinimax game tree (like a
minimax game tree but with chance nodes). Assume that the children of a node are visited in left-to-right order.

For each of the following game trees, give an assignment of terminal values to the leaf nodes such that the bolded
node can be pruned, or write “not possible” if no such assignment exists. You may give an assignment where an
ancestor of the bolded node is pruned (since then the bolded node will never be visited). Your terminal values must
be finite and you should not prune on equality. Make your answer clear - if you write “not possible” the values in
your tree will not be looked at.

Important: The α-β pruning algorithm does not deal with chance nodes. Instead, for a node n, consider all the
values seen so far, and determine whether you can know without looking at the node that the value of the node will
not affect the value at the top of the tree. If that is the case, then n can be pruned.

(a) [3 pts]

A

B

C

2 2

C

2 2

B

C

3 3

C

In this assignment, the values of the last two leaves do not matter. When we are about to look at the last
chance node, we know that the minimizer A can guarantee a score of 2, but the maximizer B can guarantee a
score of 3, and so the last chance node is pruned.

(b) [3 pts]

A

C

B

2 2

B

2 2

C

B

3 3

B

3

In this assignment, the value of the last leaf does not matter. When we are about to look at the bolded node,
we know that the minimizer A can guarantee a score of 2, but the second chance node C is guaranteed to have
a score of at least 3 (because all of the maximizers below it can guarantee a score of 3).

(c) [3 pts]

13

A

C

B B

C

B B

Not possible. At the bolded node, the minimizer can guarantee a score of at most the value of its left subtree.
However, since we have not visited all the children of C, there is no bound on the value that C could attain.
So, we need to continue exploring nodes until we can put a bound on C’s value, which means that we have to
explore the bolded node.

14

Q7. [11 pts] Lotteries in Ghost Kingdom
(a) Diverse Utilities. Ghost-King (GK) was once great friends with Pacman (P) because he observed that

Pacman and he shared the same preference order among all possible event outcomes. Ghost-King, therefore,
assumed that he and Pacman shared the same utility function. However, he soon started realizing that he and
Pacman had a different preference order when it came to lotteries and, alas, this was the end of their friendship.

Let Ghost-King and Pacman’s utility functions be denoted by UGK and UP respectively.

(i) [2 pts] Which of the following relations between UGK and UP are consistent with Ghost King’s observation
that UGK and UP agree with respect to all event outcomes but not all lotteries?

UP = aUGK + b (0 < a < 1, b > 0)
UP = aUGK + b (a > 1, b > 0)
 UP = U2

GK

 UP =
√

(UGK)

For all the above options, UP and UGK result in the same preference order between two non-lottery events
(UP (e1) > UP (e2) ⇔ UGK(e1) > UGK(e2)). However, options 1 and 2 also share the same preference
order among all lotteries as well.

(ii) [2 pts] In addition to the above, Ghost-King also realized that Pacman was more risk-taking than him .
Which of the relations between UGK and UP are possible?

UP = aUGK + b (0 < a < 1, b > 0)
UP = aUGK + b (a > 1, b > 0)
 UP = U2

GK

UP =
√

(UGK)

As an example, say Ghost-King prefers winning $2 as much as a lottery : winning $0 or $4 with equal
probability. For option c), Pacman prefers the lottery much more (more risk-taking) and for option d),
Pacman prefers the guaranteed reward.

(b) Guaranteed Return. Pacman often enters lotteries in the Ghost Kingdom. A particular Ghost vendor offers
a lottery (for free) with three possible outcomes that are each equally likely: winning $1, $4, or $5.

Let UP (m) denote Pacman’s utility function for $m. Assume that Pacman always acts rationally.

(i) [2 pts] The vendor offers Pacman a special deal - if Pacman pays $1, the vendor will rig the lottery such
that Pacman always gets the highest reward possible. For which of these utility functions would
Pacman choose to pay the $1 to the vendor for the rigged lottery over the original lottery? (Note that if
Pacman pays $1 and wins $m in the lottery, his actual winnings are $m-1.)

 UP (m) = m
 UP (m) = m2

a) UP (m) = m :
If pacman does not pay, expected utility = 1

3 (5) + 1
3 (4) + 1

3 (1) = 10
3

If pacman pays up, expected utility = 1(5− 1) + 0(4− 1) + 0(1− 1) = 4.

b) UP (m) = m2 :
If pacman does not pay, expected utility = 1

3 (5)2 + 1
3 (4)2 + 1

3 (1)2 = 14
If pacman pays up, expected utility = 1(5− 1)2 + 0(4− 1)2 + 0(1− 1)2 = 16.

(ii) [2 pts] Now assume that the ghost vendor can only rig the lottery such that Pacman never gets the
lowest reward and the remaining two outcomes become equally likely. For which of these utility functions
would Pacman choose to pay the $1 to the vendor for the rigged lottery over the original lottery?

 UP (m) = m
UP (m) = m2

15

a) UP (m) = m :
If pacman does not pay, expected utility = 1

3 (5) + 1
3 (4) + 1

3 (1) = 10
3

If pacman pays up, expected utility = 1
2 (5− 1) + 1

2 (4− 1) + 0(1− 1) = 3.5.

b) UP (m) = m2 :
If pacman does not pay, expected utility = 1

3 (5)2 + 1
3 (4)2 + 1

3 (1)2 = 14
If pacman pays up, expected utility = 1

2 (5− 1)2 + 1
2 (4− 1)2 + 0(1− 1)2 = 12.5.

(c) [3 pts] Minimizing Other Utility.

[0.5,$20 ; 0.5,$1] [0.5,$10 ; 0.5,$10] [0.5,$6 ; 0.5,$12] [0.5,$15 ; 0.5,$1]

A B

A1 A2 B1 B2

The Ghost-King, angered by Pacman’s continued winnings, decided to revolutionize the lotteries in his King-
dom. There are now 4 lotteries (A1, A2, B1, B2), each with two equally likely outcomes. Pacman, who wants to
maximize his expected utility, can pick one of two lottery types (A, B). The ghost vendor thinks that Pacman’s
utility function is U ′P (m) = m and minimizes accordingly. However, Pacman’s real utility function UP (m) may
be different. For each of the following utility functions for Pacman, select the lottery corresponding to the
outcome of the game.

Pacman’s expected utility for the 4 lotteries, under various utility functions, are as follows :
UP (m) = m : [A1 : 10.5; A2 : 10; B1 : 9; B2 : 8]
UP (m) = m2 : [A1 : 200.5; A2 : 100; B1 : 90; B2 : 113]
UP (m) =

√
m : [A1 : 2.74; A2 : 3.16; B1 : 2.96; B2 : 2.44]

(i) [1 pt] UP (m) = m :

A1 A2 # B1 # B2

(ii) [1 pt] UP (m) = m2 :

A1 # A2 # B1 B2

(iii) [1 pt] UP (m) =
√
m :

A1 A2 # B1 # B2

Since vendor minimizes U ′P (m) = m, If Pacman chooses A, vendor would pick A2 and if Pacman chooses
B, vendor would pick B2. For UP (m) = m and UP (m) =

√
m, Pacman prefers A2 over B2 and for

UP (m) = m2, Pacman prefers B2 over A2 and acts accordingly.

16

Q8. [13 pts] Indecisive Pacman
(a) Simple MDP

Pacman is an agent in a deterministic MDP with states A,B,C,D,E, F . He can deterministically choose to
follow any edge pointing out of the state he is currently in, corresponding to an action North, East, or South.
He cannot stay in place. D,E, and F are terminal states. Let the discount factor be γ = 1. Pacman receives
the reward value labeled underneath a state upon entering that state.

(i) [3 pts] Write the optimal values V ∗(s) for s = A and s = C and the optimal policy π∗(s) for s = A.

V ∗(A): 100 V ∗(C): 100

π∗(A): East
The optimal plan without indecisiveness is to go East and then South, collecting no negative rewards.

(ii) [2 pts] Pacman is typically rational, but now becomes indecisive if he enters state C. In state C, he finds
the two best actions and randomly, with equal probability, chooses between the two. Let V̄ (s) be the
values under the policy where Pacman acts according to π∗(s) for all s 6= C, and follows the indecisive
policy when at state C. What are the values V̄ (s) for s = A and s = C?

V̄ (A): 25 V̄ (C): 25
Pacman is unaware of his indecisiveness at state C. So he will follow his policy π∗ from (i) at state A

and go East. When he has reached C, his two best actions are going South and going East. He will then
receive the average of the value of taking those two actions, (100− 50)/2 = 25, since he will take either

one with equal probability.

(iii) [2 pts] Now Pacman knows that he is going to be indecisive when at state C and decides to recompute
the optimal policy at all other states, anticipating his indecisiveness at C. What is Pacman’s new policy
π̃(s) and new value Ṽ (s) for s = A?

π̃ (A): South Ṽ (A): 99
Now Pacman knows about his indecisiveness as C, and so he can anticipate the low value (25) of being
in C. He can therefore choose to go South and receive a reward of -1 and from there go East, to get a

reward of 100, making for a value from A of 99.

17

(b) General Case – Indecisive everywhere

Pacman enters a new non-deterministic MDP and has become indecisive in all states of this MDP: at every
time-step, instead of being able to pick a single action to execute, he always picks the two distinct best actions
and then flips a fair coin to randomly decide which action to execution from the two actions he picked.

Let S be the state space of the MDP. Let A(s) be the set of actions available to Pacman in state s. Assume
for simplicity that there are always at least two actions available from each state (|A(s)| ≥ 2).

This type of agent can be formalized by modifying the Bellman Equation for optimality. Let V̂ (s) be the
value of the indecisive policy. Precisely:

V̂ (s0) = E[R(s0, a0, s1) + γR(s1, a1, s2) + γ2R(s2, a2, s3)) + . . .]

Let Q̂(s, a) be the expected utility of taking action a from state s and then following the indecisive policy after
that step. We have that:

Q̂(s, a) =
∑
s′∈S

T (s, a, s′)(R(s, a, s′) + γV̂ (s′))

(i) [3 pts] Which of the following options gives V̂ in terms of Q̂? When combined with the above formula for
Q̂(s, a) in terms of V̂ (s′), the answer to this question forms the Bellman Equation for this policy.

V̂ (s) =

max
a∈A(s)

Q̂(s, a) # max
a1∈A(s)

max
a2∈A(s), a1 6=a2

(Q̂(s, a1) · Q̂(s, a2))

 max
a1∈A(s)

max
a2∈A(s), a1 6=a2

1

2
(Q̂(s, a1) + Q̂(s, a2)) # max

a1∈A(s)

∑
a2∈A(s), a1 6=a2

(Q̂(s, a1) · Q̂(s, a2))

#
∑

a1∈A(s)

∑
a2∈A(s), a1 6=a2

(Q̂(s, a1) · Q̂(s, a2)) #
∑

a1∈A(s)

∑
a2∈A(s), a1 6=a2

1

2
(Q̂(s, a1) + Q̂(s, a2))

max
a1∈A(s)

∑
a2∈A(s), a1 6=a2

1

2
(Q̂(s, a1) + Q̂(s, a2))

1

|A(s)|(|A(s)| − 1)

∑
a1∈A(s)

∑
a2∈A(s), a1 6=a2

(Q̂(s, a1) · Q̂(s, a2))

1

|A(s)|(|A(s)| − 1)

∑
a1∈A(s)

∑
a2∈A(s), a1 6=a2

1

2
(Q̂(s, a1) + Q̂(s, a2))

max
a1∈A(s)

1

|A(s)| − 1

∑
a2∈A(s), a1 6=a2

1

2
(Q̂(s, a1) + Q̂(s, a2))

max
a1∈A(s)

1

|A(s)| − 1

∑
a2∈A(s), a1 6=a2

(Q̂(s, a1) · Q̂(s, a2))

None of the above. Pacman must select the best two actions (two maxes), and then flip a coin to
determine which to perform (average their values).

(ii) [3 pts] Which of the following equations specify the relationship between V ∗ and V̂ in general?

2V ∗(s) = V̂ (s) # V ∗(s) = 2V̂ (s) # (V ∗(s))2 = |V̂ (s)| # |V ∗(s)| = (V̂ (s))2

1

|A(s)|
∑

a∈A(s)

∑
s′∈S

T (s, a, s′)V̂ (s′) = V ∗(s) # 1

|A(s)|
∑

a∈A(s)

∑
s′∈S

T (s, a, s′)V ∗(s′) = V̂ (s)

1

|A(s)|
∑

a∈A(s)

∑
s′∈S

T (s, a, s′)(R(s, a, s′) + γV ∗(s′)) = V̂ (s)

1

|A(s)|
∑

a∈A(s)

∑
s′∈S

T (s, a, s′)(R(s, a, s′) + γV̂ (s′)) = V ∗(s)

 None of the above. None of the above are valid relationships between V ∗ and V̂ . It may be possible
to construct MDPs where some of the above are satisfied, but they won’t be satisfied for all MDPs.

18

Q9. [8 pts] Reinforcement Learning
Imagine an unknown game which has only two states {A,B} and in each state the agent has two actions to choose
from: {Up, Down}. Suppose a game agent chooses actions according to some policy π and generates the following
sequence of actions and rewards in the unknown game:

t st at st+1 rt
0 A Down B 2
1 B Down B -4
2 B Up B 0
3 B Up A 3
4 A Up A -1

Unless specified otherwise, assume a discount factor γ = 0.5 and a learning rate α = 0.5

(a) [2 pts] Recall the update function of Q-learning is:

Q(st, at)← (1− α)Q(st, at) + α(rt + γmax
a′

Q(st+1, a
′))

Assume that all Q-values initialized as 0. What are the following Q-values learned by running Q-learning with
the above experience sequence?

Q(A,Down) = 1 , Q(B,Up) =
7

4

Perform Q-learning update 4 times, once for each of the first 4 observations.
(b) [2 pts] In model-based reinforcement learning, we first estimate the transition function T (s, a, s′) and the reward

function R(s, a, s′). Fill in the following estimates of T and R, estimated from the experience above. Write
“n/a” if not applicable or undefined.

T̂ (A,Up,A) = 1 , T̂ (A,Up,B) = 0 , T̂ (B,Up,A) =
1

2
, T̂ (B,Up,B) =

1

2

R̂(A,Up,A) = −1 , R̂(A,Up,B) = n/a , R̂(B,Up,A) = 3 , R̂(B,Up,B) = 0

Count transitions above and calculate frequencies. Rewards are observed rewards.

(c) To decouple this question from the previous one, assume we had a different experience and ended up with
the following estimates of the transition and reward functions:

s a s′ T̂ (s, a, s′) R̂(s, a, s′)
A Up A 1 10
A Down A 0.5 2
A Down B 0.5 2
B Up A 1 -5
B Down B 1 8

(i) [2 pts] Give the optimal policy π̂∗(s) and V̂ ∗(s) for the MDP with transition function T̂ and reward
function R̂.
Hint: for any x ∈ R, |x| < 1, we have 1 + x+ x2 + x3 + x4 + · · · = 1/(1− x).

π̂∗(A) = Up , π̂∗(B) = Down , V̂ ∗(A) = 20 , V̂ ∗(B) = 16 .

Find the optimal policy first, and then use optimal policy to calculate the value function using a Bellman
equation.

(ii) [2 pts] If we repeatedly feed this new experience sequence through our Q-learning algorithm, what values
will it converge to? Assume the learning rate αt is properly chosen so that convergence is guaranteed.

19

 the values found above, V̂ ∗

the optimal values, V ∗

neither V̂ ∗ nor V ∗

not enough information to determine

The Q-learning algorithm will not converge to the optimal values V ∗ for the MDP because the experience
sequence and transition frequencies replayed are not necessarily representative of the underlying MDP.
(For example, the true T (A,Down,A) might be equal to 0.75, in which case, repeatedly feeding in the
above experience would not provide an accurate sampling of the MDP.) However, for the MDP with
transition function T̂ and reward function R̂, replaying this experience repeatedly will result in Q-learning
converging to its optimal values V̂ ∗.

20

Q10. [14 pts] Potpourri
(a) Each True/False question is worth 2 points. Leaving a question blank is worth 0 points. Answering incor-

rectly is worth −2 points.

(i) [2 pts] [true or false] There exists some value of c > 0 such that the heuristic h(n) = c is admissible.
This heuristic is non-zero at the goal state, and so it cannot be admissible.

(ii) [2 pts] [true or false] A∗ tree search using the heuristic h(n) = c for some c > 0 is guaranteed to find the
optimal solution.
Each state in the fringe has priority f(n) = g(n) +h(n) = g(n) + c. Only the ordering of the nodes in the
fringe matters, and so adding a constant c to all priorities makes no difference. So, this is equivalent to
using f(n) = g(n), which is UCS, which will find the optimal solution.

(b) [2 pts] Consider a one-person game, where the one player’s actions have non-deterministic outcomes. The
player gets +1 utility for winning and -1 for losing. Mark all of the approaches that can be used to model and
solve this game.

Minimax with terminal values equal to +1 for wins and -1 for losses

 Expectimax with terminal values equal to +1 for wins and -1 for losses

 Value iteration with all rewards set to 0, except wins and losses, which are set to +1 and -1

None of the above

Minimax is not a good fit, because there is no minimizer - there is only a maximizer (the player) and chance
nodes (the non-deterministic actions). The existence of a maximizer and chance nodes means that this is
particularly suited to expectimax and value iteration.

(c) [4 pts] Pacman is offered a choice between (a) playing against 2 ghosts or (b) a lottery over playing against 0
ghosts or playing against 4 ghosts (which are equally likely). Mark the rational choice according to each utility
function below; if it’s a tie, mark so. Here, g is the number of ghosts Pacman has to play against.

(i) U(g) = g # 2 ghosts # lottery between 0 and 4 ghosts tie

(ii) U(g) = −(2g) 2 ghosts # lottery between 0 and 4 ghosts # tie

(iii) U(g) = 2(−g) = 1
2g # 2 ghosts lottery between 0 and 4 ghosts # tie

(iv) U(g) = 1 if g < 3 else 0 2 ghosts # lottery between 0 and 4 ghosts # tie

For U(g) = g, we get U(2) = 2 and U([4, 0.5; 0, 0.5]) = 0.5U(4) + 0.5U(0) = 0.5(4) + 0.5(0) = 2. Since 2 = 2,
Pacman is indifferent.

For U(g) = −2g, we get U(2) = −22 = −4 and U([4, 0.5; 0, 0.5]) = 0.5U(4) + 0.5U(0) = 0.5(−16) + 0.5(−1) =
−8.5. Since −4 > −8.5, Pacman prefers the 2 ghosts.

For U(g) = 2−g, we get U(2) = 1
4 and U([4, 0.5; 0, 0.5]) = 0.5U(4) + 0.5U(0) = 0.5(1

16) + 0.5(1) = 17
32 . Since

17
32 >

1
4 , Pacman prefers the lottery.

For U(g) = 1 if g < 3 else 0, we get U(2) = 1 and U([4, 0.5; 0, 0.5]) = 0.5U(4) + 0.5U(0) = 0.5(0) + 0.5(1) = 0.5.
Since 1 > 0.5, Pacman prefers the 2 ghosts.

(d) Suppose we run value iteration in an MDP with only non-negative rewards (that is, R(s, a, s′) ≥ 0 for any
(s, a, s′)). Let the values on the kth iteration be Vk(s) and the optimal values be V ∗(s). Initially, the values
are 0 (that is, V0(s) = 0 for any s).

(i) [1 pt] Mark all of the options that are guaranteed to be true.

For any s, a, s′, V1(s) = R(s, a, s′)

For any s, a, s′, V1(s) ≤ R(s, a, s′)

For any s, a, s′, V1(s) ≥ R(s, a, s′)

 None of the above are guaranteed to be true.

21

V1(s) = max
a

∑
s′
T (s, a, s′)R(s, a, s′) (using the Bellman equation and setting V0(s′) = 0).

Now consider an MDP where the best action in state X is clockwise, which goes to state Y with a
reward of 6 with probability 0.5 and goes to state Z a reward of 4 with probability 0.5. Then V1(X) =
0.5(6)+0.5(4) = 5. Notice that setting (s, a, s′) = (X, clockwise, Z) gives a counterexample for the second
option and (s, a, s′) = (X, clockwise, Y) gives a counterexample for the third option.

(ii) [1 pt] Mark all of the options that are guaranteed to be true.

For any k, s, Vk(s) = V ∗(s)

 For any k, s, Vk(s) ≤ V ∗(s)
For any k, s, Vk(s) ≥ V ∗(s)
None of the above are guaranteed to be true.

Intuition: Values can never decrease in an iteration. In the first iteration, since all rewards are positive,
the values increase. In any other iteration, the components that contribute to Vk+1(s) are R(s, a, s′) and
V (s′). R(s, a, s′) is the same across all iterations, and V (s′) increased in the previous iteration, so we
expect Vk+1(s) to increase as well.

More formally, we can prove Vk(s) ≤ Vk+1(s) by induction.

Base Case: V1(s) = maxa

∑
s′ T (s, a, s′)R(s, a, s′).

Since R(s, a, s′) ≥ 0, T (s, a, s′) ≥ 0, we have V1(s) ≥ 0, and so V0(s) ≤ V1(s).

Induction: Vk+1(s) = maxa

∑
s′ T (s, a, s′)[R(s, a, s′) + γVk(s′)]

≥ maxa

∑
s′ T (s, a, s′)[R(s, a, s′) + γVk−1(s′)] (using Vk(s′) ≥ Vk−1(s′) from the inductive hypothesis)

= Vk(s).

This immediately leads to Vk(s) ≤ V ∗(s) (since we can think of V ∗(s) as V∞(s)).

(e) [2 pts] Consider an arbitrary MDP where we perform Q-learning. Mark all of the options below in which we
are guaranteed to learn the optimal Q-values. Assume that the learning rate α is reduced to 0 appropriately.

During learning, the agent acts according to a suboptimal policy π. The learning phase continues
until convergence.

 During learning, the agent chooses from the available actions at random. The learning phase continues
until convergence.

 During learning, in state s, the agent chooses the action a that it has chosen least often in state s,
breaking ties randomly. The learning phase continues until convergence.

During learning, in state s, the agent chooses the action a that it has chosen most often in state s,
breaking ties randomly. The learning phase continues until convergence.

During learning, the agent always chooses from the available actions at random. The learning phase
continues until each (s, a) pair has been seen at least 10 times.

In order for Q-learning to converge to the optimal Q-values, we need every (s, a) pair to be visited infinitely
often. Option 5 only does this 10 times, whereas options 1 and 4 choose only one of the many actions possible
for a given state s. Only options 2 and 3 visit each (s, a) pair infinitely often.

22

THIS PAGE IS INTENTIONALLY LEFT BLANK

