CS 61A Structure and Interpretation of Computer Programs
F&H 2014 MIDTERM 2 SOLUTIONS

INSTRUCTIONS

e You have 2 hours to complete the exam.

e The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5” x 11”
crib sheet of your own creation and the 2 official 61A midterm study guides attached to the back of this exam.

e Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation.

Last name

First name

SID

Login

TA & section time

Name of the person to
your left

Name of the person to
your right

All the work on this exam
is my own. (please sign)

For staff use only

Q.1] Q2/Q.3]/Q.41Q 5] Total

/12 /14 /8| /8| /8 /50

Blank Page

1. (12 points) Class Hierarchy

For each row below, write the output displayed by the interactive Python interpreter when the expression is
evaluated. Expressions are evaluated in order, and expressions may affect later expressions.

Whenever the interpreter would report an error, write ERROR. You should include any lines displayed before
an error. Reminder: The interactive interpreter displays the repr string of the value of a successfully evaluated
expression, unless it is None. Assume that you have started Python 3 and executed the following:

class Worker:
greeting = ’Sir’
def __init__(self):
self.elf = Worker
work (self):
return self.greeting + ’

__repr__(self):

def

def

, I work”’

return Bourgeoisie.greeting

class Bourgeoisie(Worker):
greeting = ’Peon’
def work(self):
print (Worker .work (self))
return
class Proletariat (Worker):
greeting = ’Comrade’
def work(self, other):
other.greeting =

self.greeting + ’ ’

’My job is to gather wealth’

other.work () # for revolution

return other
jack = Worker ()
john = Bourgeoisie ()
jack.greeting = ’Maam’

+ other.greeting

Expression Interactive Output Expression Interactive Output
5%5 25 . Peon, I work
1/0 ERROR john.work() [10:] ’to gather wealth’
’Sir, I work’
Worker () .work ()
C de P I k
Proletariat () .work(john) omrade Feon, - wor
Peon
Peon
jack
john.elf .work(john) ’Comrade Peon, I work’
’Maam, I work’
jack.work()

OCooONOOUTE WN -

2. (14 points) Space

(a) (8 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

e Add all missing names and parent annotations to all local frames.

e Add all missing values created during execution.

e Show the return value for each local frame.

def locals(only):

def get(out):
nonlocal only
def only(one):
return lambda get: out
out = out + 1
return [out + 2]
out = get(-only)
return only

only = 3
earth = locals(only)
earth(4)(5)

Global frame

locals \ o

only ‘ 3

earth f

f1l: locals

[parent=G]

only X~

get —

out ‘

Return Value ‘

f2: get

[parent=f1]

out ‘ -2

L

Return Value ‘

f3: only

[parent=f2]

one ‘ 4

Return Value ‘ —

f4: A <line 5>

[parent=f3]

get ‘ 5

Return Value | -2

[func locals(only) [parent=Globall

func only(one) [parent=f2]

[func get(out) [parent=f1]

list

[func A(get) <line 5> [parent=f3]

(b) (6 pt) Fill in the blanks with the shortest possible expressions that complete the code in a way that results
in the environment diagram shown. You can use only brackets, commas, colons, and the names luke, spock,
and yoda. You *cannot* use integer literals, such as 0, in your answer! You also cannot call any
built-in functions or invoke any methods by name.

spock, yoda =1, 2
luke = [[yodal, [spock], yoda]
yoda = 0@
yoda = [luke, lukelyodal [yoda]]
yoda.append(luke[:spock])
Global frame spock{ggiigi list

0 1 2

v

luke | — \\ *\ 2

yoda | | \ \
list list
0 0
2 1
list list A
0 1 2 3

3. (8 points) This One Goes to Eleven

(a) (4 pt) Fill in the blanks of the implementation of sixty_ones below, a function that takes a Link instance
representing a sequence of integers and returns the number of times that 6 and 1 appear consecutively.

def

sixty_ones(s):
"""Return the number of times that 1 follows 6 in linked list s.

>>> once = Link(4, Link(6, Link(1, Link(6, Link (0, Link(1))))))
>>> twice = Link(1, Link(6, Link(1, once)))
>>> thrice = Link (6, twice)

>>> apply_to_all(sixty_ones, [Link.empty, once, twice, thricel)
[0, 1, 2, 3]

if s is Link.empty or s.rest is Link.empty:
return O

elif s.first == 6 and s.rest.first == 1:
return 1 + sixty_ones(s.rest.rest)

else:

return sixty_ones(s.rest)

(b) (4 pt) Fill in the blanks of the implementation of no_eleven below, a function that returns a list of all
distinct length-n lists of ones and sixes in which 1 and 1 do not appear consecutively.

def no_eleven(n):

"""Return a list of lists of 1’s and 6’s that do not contain 1 after 1.
>>> no_eleven (2)

[(6, 6], [6, 11, [1, 6]1]

>>> no_eleven (3)

(¢, 6, 61, (6, 6, 11, [6, 1, 61, [1, 6, 61, [1, 6, 1]1]

>>> no_eleven(4)[:4] # first half

(e, 6, 6, 61, [6, 6, 6, 11, [6, 6, 1, 6], [6, 1, 6, 6]]

>>> no_eleven(4)[4:] # second half

(e, 1, 6, 11, (1, 6, 6, 6], [1, 6, 6, 1], [1, 6, 1, 6]]

W
if n == O:
return [[]]
elif n == 1:
return [[6], [1]]
else:
a, b = no_eleven(n-1), no_eleven(n-2)

return [[6] + s for s in a] + [[1, 6] + s for s in D]

4. (8 points) Tree Time

(a) (4 pt) A GrootTree g is a binary tree that has an attribute parent. Its parent is the GrootTree in which
g is a branch. If a GrootTree instance is not a branch of any other GrootTree instance, then its parent is
BinaryTree.empty.

BinaryTree.empty should not have a parent attribute. Assume that every GrootTree instance is a branch
of at most one other GrootTree instance and not a branch of any other kind of tree.

Fill in the blanks below so that the parent attribute is set correctly. You may not need to use all of the lines.
Indentation is allowed. You should not include any assert statements. Using your solution, the doctests for
fib_groot should pass. The BinaryTree class appears on your study guide.

Hint: A picture of £ib_groot(3) appears on the next page.

class GrootTree(BinaryTree):
"""A binary tree with a parent."""
def __init__(self, entry, left=BinaryTree.empty, right=BinaryTree.empty):
BinaryTree.__init__(self, entry, left, right)
self .parent = BinaryTree.Empty
for b in [left, right]:
if b is not BinaryTree.empty:

b.parent = self

def fib_groot(n):
"""Return a Fibomnacci GrootTree.

>>> t = fib_groot (3)
>>> t.entry

2
>>> t.parent.is_empty
True
>>> t.left.parent.entry
2
>>> t.right.left.parent.entry
1
>>> t.right.left.parent.right.parent.entry
1
nnn
if n == 0 or n == 1:
return GrootTree (n)
else:

left, right = fib_groot(n-2), fib_groot(n-1)
return GrootTree(left.entry + right.entry, left, right)

(b) (4 pt) Fill in the blanks of the implementation of paths, a function that takes two arguments: a GrootTree
instance g and a list s. It returns the number of paths through g whose entries are the elements of s. A
path through a GrootTree can extend either to a branch or its parent.

You may assume that the GrootTree class is implemented correctly and that the list s is non-empty.
The two paths that have entries [2, 1, 2, 1, 0] in fib_groot(3) are shown below (left). The one path
that has entries [2, 1, 0, 1, 0] is shown below (right).

Two paths for [2, 1, 2, 1, 0] One path for [2, 1, 0, 1, 0]

-
K

def paths(g, s):
"""The number of paths through g with entries s.

>>> t = fib_groot (3)
>>> paths(t, [1])

0

>>> paths(t, [2])

1

>>> paths(t, [2, 1, 2, 1, 0])

2

>>> paths(t, [2, 1, 0, 1, 0])

1

>>> paths(t, [2, 1, 2, 1, 2, 1])

8

if g is BinaryTree.empty or s == [] or g.entry != s[0]:
return O

elif len(s) == 1 and g.entry == s[0]:
return 1

else:

extensions = [g.left, g.right, g.parent]

return sum(paths(x, s[1:]) for x in extensions)

5. (8 points) Abstraction and Growth

(a) (6 pt) Your project partner has invented an abstract representation of a sequence called a slinky, which
uses a transition function to compute each element from the previous element. A slinky explicitly stores
only those elements that cannot be computed by calling transition, using a starts dictionary. Each entry
in starts is a pair of an index key and an element value. See the doctests for examples.

Help your partner fix this implementation by crossing out as many lines as possible, but leaving a program
that passes the doctests. Do not change the doctests. The program continues onto the following page.

def length(slinky):
return slinky [0]

def starts(slinky):
return slinky[1]

def transition(slinky):
return slinky [2]

def slinky(elements, transition):
"""Return a slinky containing elements using transition.

>>> s = slinky(range (3, 10), lambda x: x+1)
>>> length(s)

7
>>> starts(s)
{0: 3}

>>> get(s, 2)
5

>>> t = slinky([2, 4, 10, 20, 40], lambda x: 2%*x)
>>> starts (t)
{0: 2, 2: 10}
>>> get(t, 3)
20
>>> slinky ([], abs)
[0, {}, <built-in function abs>]
>>> slinky ([5, 4, 3], abs)
[3, {0: 5, 1: 4, 2: 3}, <built-in function abs>]
starts = {}
for index in range(len(elements)):
if index == 0 or elements[index] != transition(elements[index-1]):
starts[index] = elements[index]
return [len(elements), starts, transition]

10

def

get (slinky, index):
"""Return the element at index of slinky."""

start = index
while start not in starts(slinky):
start = start - 1

value = starts(slinky) [start]

while start < index:
value = transition(slinky) (value)
start start + 1

return value

(b) (2 pt) Circle the © expression below that describes the number of operations required to compute
slinky(elements, transition), assuming that

n is the initial length of elements

d is the final length of the starts dictionary created,

the transition function requires constant time,

the pop method of a list requires constant time,

the len function applied to a 1list requires linear time,

the 1len function applied to a range requires constant time,

adding or updating an entry in a dictionary requires constant time,
getting an element from a list by its index requires constant time,
creating a list requires time that is proportional to the length of the list.

o(1) O(n) 0(d) O(n?) o(d?) O(n - d)

