University of California, Berkeley - College of Engineering
Department of Electrical Engineering and Computer Sciences
Spring 2015 Instructors: Krste Asanovi¢, Vladimir Stojanovic 2015-02-26

@ CS61C MIDTERM 1 ¢

After the exam, indicate on the line above where you fall in the emotion spectrum between “sad” & “smiley”...

Last Name

First Name
Student ID Number |
; CS61C Login | cs6lc- ‘
: The name of your SECTION TA (please circle) David | Donggyu | Fred | Jeffrey | Martin |

Nolan | Sagar | Shreyas | William i

Name of the person to your Left

Name of the person to your Right

All the work js my own. | had no prior knowledge of the exam
contents nor will | share the contents with others in CS61C

who have not taken it yet. (please sign) i

Instructions (Read Me!)

» This booklet contains 7 numbered pages including the cover page. The back of each page is blank and
can be used for scratch-work, but will not be looked at for grading. (i.e. the sides of pages without the
printed “SID: " header will not even be scanned into gradescope).

* Please turn off all cell phones, smartwatches, and other mobile devices. Remove all hats & headphones.
Place your backpacks, laptops and jackets under your seat.

* You have 80 minutes to complete this exam. The exam is closed book; no computers, phones, or calculators
are allowed. You may use one handwritten 8.5"x11” page (front and back) of notes in addition to the
provided green sheet.

« There may be partial credit for incomplete answers; write as much of the solution as you can. We will deduct
points if your solution is far more complicated than necessary. When we provide a blank, please fit your
answer within the space provided. “IEC format” refers to the mebi, tebi, etc prefixes.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Total
Points 10 12 6 12 18 16 16 90
Possible
Points

Earned

SID:

Q1: Number Representation (10 points)

1) Convert the following 8-bit two's-complement numbers from hexadecimal to decimal:

0x80 =

OXFF =

0x0F =

2) For two n-bit numbers, what is the difference between the largest unsigned number and the largest
two's-compiement number? In other words, what is MAX_UNSIGNED_INT — MAX_SIGNED_INT? Write
your answer in terms of n.

3) Fill in the blanks to return the largest positive number a 32-bit two’s-complement number can
represent.

unsigned int max_twos() {
return ((1 <<) -)i

}

4) Consider a new type of notation for représenting signed numbers, biased notation. The formula for
obtaining the value from a number written in biased notation is:

value = value_as_unsigned — b
Where b is a constant called the bias. Example with 4 bits and a bias of 4:

3 —-4=-1
14 — 4 =10

- 0b0011
0bl110

If we wanted an n-bit biased system to represent the same range as two’s complement numbers,
what is the value of b?

217

SID:

Q2: Pointers and Memory (12 points)

1) Assume you are given an int array arr, with a pointer p to its beginning:

int arr[] = {@x61c, ©x5008, ©Oxd, Ox4, Ox3, Ox4ffc};
int *p = arr;

Suppose arr is at location 0x5000 in memory, i.e., the value of p if interpreted as an integer is
0x5000. To visualize this scenario:

[ex6lc | ox5008 | oxd | ex4 | ex3 | exaffc |
:Ts arr[@] arr[5]

p
Assume that integers and pointers are both 32 bits. What are the values of the following
expressions? If an expression may cause an error, write “Error” instead.

a) *(p+3) =
b)p[4] =

c) *(p+5) + p[3]
(d)*(int*) (p[1])

e) *(int*) (*(p+5)) =

2) Consider the following code and its output. Fill in the blanks.

void fool(a, int n) {
int i; _
for (i =0 ; 1i<n; i++) {
(*(a+i)) += 3;
}

}

void foo2(p) { p++; }

int main() |
int x = H
int a[] = {1, 2, 3, 4, 5};
int *p = &a[1];
fool(a, sizeof(a) / sizeof(int));
foo2(&p);
printf(“%d, %d, %d\n”, a[1], *(++p), a[x]);

}

The output of this code is:

377

Q3: C Memory Model (6 points)

For each of the following functions, answer the questions below in the corresponding box to the right:

SID:

1) Does this function return a usable pointer to a string containing “asd£~?

2) Which area of memory does the returned pointer point to?

3) Does this function leak memory?

You may assume that malloc calls will always return a non-NULL pointer.

char * get_asdf_string_1() {
char *a = “asdf”;
return a;

get asdf string_1

1)

2)

3)

char * get_asdf_string_2() {
char a[5];
af@]=‘a’;
a[1]="s’;
a[2]=¢d’;
a[3]=f;
a[4]="\e’;
return a;

get asdf_string 2

1)

2)

3)

char * get_asdf_string_3() {

char * a = malloc(sizeof(char) * 5);

a = “asdf”;
return a;

get asdf string_3

1)

2)

3)

char * g = “asdf”;

char * get_asdf_string_4() {
return g;
}

get asdf string 4

1)

2)

3)

SID:

Q4: Linked Lists (12 points)

1) Fill out the declaration of a singly linked linked-list node below.

typedef struct node {
int value;
next; // pointer to the next element

} sll_node;

2) Let's convert the linked list to an array. Fill in the missing code.

int * to_array(sll_node *sll, int size) {

int i = 9;
int *arr = 3
while (s11) {
arr[i] = 5
sll = 5
}

return arr;

3) Finally, complete delete_even() that will delete every second element of the list. For
example, given the lists below:
Before: [Node 1] —.[Node2 | — [Node 3 | — [Node 4 |

After: [Node1|— |Node3 |

Calling delete_even() on the list labeled “Before” will change it into the list labeled “After”.
All list nodes were created via dynamic memory allocation.

void delete_even(sll_node *sll) {
sll_node *temp; ‘

if (!sll || !sll->next) return;
temp = s
sll->next = 3
free();
delete_even()

517

SID:

Q5: MIPS with FUNctions (18 points)

The function countChars(char *str, char *target) returns the number of times characters in
~ target appear in str. For example:

int countChars(char *str, char *target) {
countChars(“abc abc abc”, “a”) = 3 int count = @;
countChars(*“abc abc abc”, “ab”) = 6 while (*str) {
countChars(“abc abc abc”, “abcd”) = 9 count += isCharInStr(target, *str);
str++;
The C code for countChars is given to you in }
the box on right. The helper function return count;
isCharInstr(char *target, char c) }

returns 1 if ¢ is present in target and 0 if not.
Finish the implement of countChars in TAL MIPS below. You may not need every blank.

countChars:
addiu $sp, $sp,
Store onto the stack if needed

addiu $s0, $zero, © # We’ll store the count in $s0©
addiu $s1, $a0, ©
addiu $s2, %$a1, ©
loop:
addiu $a@e, $s2, ©

beq
jal isCharInStr

done:
Load from the stack if needed

addiu $sp, $sp,
jr $ra

6/7

SID:

Q6: M!PS Instruction Formats (16 points)

Convert the following TAL MIPS instructions into their machine code representation (binary format) or
vice versa. For rows where you convert instructions to machine code, we've provided boxes to the

right that you should fill in with the appropriate fields (in binary):
MIPS Machine Code

foo_bar:
0b00000000100000000001000000100001

loop: beq $al $0 end

0b00000000000000100001000001000000
j loop 0b00001000000000000000000000000001

end: Jjr $ra

Q7: MIPS Addressing Modes (16 points)

We have a function that, when given a branch instruction, returns the number of bytes that the
Program Counter (PC) would change by, i.e. (PC_of_branch_target -
PC_of_branch_instruction).

branchAmount(branch_inst):
calculate the instruction offset from branch_inst
convert the offset to byte addressing
return PC_of_branch_target - PC_of_branch_instruction

Write branchAmount in TAL MIPS (no pseudoinstructions) .You may not need all the blanks. ASsume
that register $a0 contains a valid branch instruction.

branchAmount:
andi $t0, $a0, 0x8000 # Mask out a certain bit
bne 5 , labell
j label2

labell:

or $vo, %$a@, $ti1
label2:
51l » ” # Convert to byte addressing

label3:
jr $ra

77

