
CS 61A Structure and Interpretation of Computer Programs
Fall 2014 Final Exam Solutions

INSTRUCTIONS

• You have 3 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5” × 11”
crib sheet of your own creation and the 3 official 61A midterm study guides attached to the back of this exam.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation.

Last name

First name

SID

Login

TA & section time

Name of the person to
your left

Name of the person to
your right

All the work on this exam
is my own. (please sign)

For staff use only

Q. 1 Q. 2 Q. 3 Q. 4 Q. 5 Q. 6 Total

/14 /16 /12 /12 /18 /8 /80

2

1. (14 points) Representing Scheme Lists

For each row below, write the output displayed by the interactive Python interpreter when the expression is
evaluated. Expressions are evaluated in order, and expressions may affect later expressions.

Whenever the interpreter would report an error, write Error. You should include any lines displayed before
an error. Reminder : The interactive interpreter displays the repr string of the value of a successfully evaluated
expression, unless it is None.

The Pair class from Project 4 is described on your final study guide. Recall that its __str__ method returns
a Scheme expression, and its __repr__ method returns a Python expression. The full implementation of Pair
and nil appear at the end of the exam as an appendix. Assume that you have started Python 3, loaded Pair

and nil from scheme reader.py, then executed the following:

blue = Pair(3, Pair(4, nil))

gold = Pair(Pair(6, 7), Pair(8, 9))

def process(s):

cal = s

while isinstance(cal , Pair):

cal.bear = s

cal = cal.second

if cal is s:

return cal

else:

return Pair(cal , Pair(s.first , process(s.second)))

def display(f, s):

if isinstance(s, Pair):

print(s.first , f(f, s.second))

y = lambda f: lambda x: f(f, x)

Expression Output
Pair(1, nil) Pair(1, nil)

print(Pair(1, nil)) (1)

1/0 Error

print(print(3), 1/0)

3

Error

print(Pair(2, blue))

(2 3 4)

print(gold)

((6 . 7) 8 . 9)

Expression Output

process(blue.second)

Pair(nil, Pair(4, nil))

print(process(gold))

(9 (6 . 7) 9 8 . 9)

gold.second.bear.first

8

y(display)(gold)

8 None

(6 . 7) None

3

2. (16 points) Environments

(a) (8 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

f1: ___________ [parent=____________]

Return Value

f2: ___________ [parent=____________]

Return Value

def tattoo(heart):
 def mom():
 nonlocal mom
 mom = lambda: heart(2) + 1
 return 3
 return mom() + mom() + 4

tattoo(lambda ink: ink + 0.5)

Global frame tattoo
func tattoo(heart) [parent=Global]

 1
 2
 3
 4
 5
 6
 7
 8

f3: ___________ [parent=____________]

Return Value

f4: ___________ [parent=____________]

Return Value

tattoo Global

heart func λ(ink) <line 8> [parent=Global]

mom

mom f1

func λ() <line 4> [parent=f2]

3

λ

λ

f2

Global

ink 2

2.5

3.5

10.5

4

(b) (6 pt) For the six-line program below, fill in the three environment diagrams that would result after executing
each pair of lines in order. You must use box-and-pointer diagrams to represent list values. You
do not need to write the word “list” or write index numbers.

Important: All six lines of code are executed in order! Line 3 is executed after line 2 and line 5 after line 4.

meow = [1, 2]
cat = [meow, [4, 5]]

Global frame meow

cat

cat[0][1] = cat[1][0]
cat[meow[0]][0] = meow

meow[0] = [cat.pop(0)]
cat.extend(cat[0][1:])

 1
 2

 3
 4

 5
 6

Global frame meow

cat

Global frame meow

cat

1 2

4 5

1 4

5

4

5 5

(c) (2 pt) Circle the value, True or False, of each expression below when evaluated in the environment created
by executing all six lines above. If you leave this question blank, you will receive 1 point.

(True / False) meow is cat[0]

(True / False) meow[0][0] is cat[0][0]

5

3. (12 points) Expression Trees

Your partner has created an interpreter for a language that can add or multiply positive integers. Expressions
are represented as instances of the Tree class and must have one of the following three forms:

• (Primitive) A positive integer entry and no branches, representing an integer
• (Combination) The entry ’+’, representing the sum of the values of its branches
• (Combination) The entry ’*’, representing the product of the values of its branches

The Tree class is on the Midterm 2 Study Guide. The sum of no values is 0. The product of no values is 1.

(a) (6 pt) Unfortunately, multiplication in Python is broken on your computer. Implement eval_with_add,
which evaluates an expression without using multiplication. You may fill the blanks with names or call
expressions, but the only way you are allowed to combine two numbers is using addition.

def eval_with_add(t):

""" Evaluate an expression tree of * and + using only addition.

>>> plus = Tree(’+’, [Tree(2), Tree (3)])

>>> eval_with_add(plus)

5

>>> times = Tree(’*’, [Tree(2), Tree (3)])

>>> eval_with_add(times)

6

>>> deep = Tree(’*’, [Tree(2), plus , times])

>>> eval_with_add(deep)

60

>>> eval_with_add(Tree(’*’))

1

"""

if t.entry == ’+’:

return sum([eval_with_add(b) for b in t.branches])

elif t.entry == ’*’:

total = 1

for b in t.branches:

term , total = total , 0

for _ in range(eval_with_add(b)):

total = total + term

return total

else:

return t.entry

6

(b) (6 pt) A TA suggests an alternative representation of an expression, in which the entry is the value of the
expression. For combinations, the operator appears in the left-most (index 0) branch as a leaf.

Note: This question was updated from its original published version, which had a flaw in the
provided code.

+

* 1

2 3

Original format: Alternative: 7

6 1

* 32

+

Implement transform, which takes an expression and mutates all combinations so that their entries are values
and their first branches are operators. In addition, transform should return the value of its argument. You
may use the calc_apply function defined below.

def calc_apply(operator , args):

if operator == ’+’:

return sum(args)

elif operator == ’*’:

return product(args)

def product(vals):

total = 1

for v in vals:

total *= v

return total

def transform(t):

""" Transform expression tree t to have value entries and operators leaves.

>>> seven = Tree(’+’, [Tree(’*’, [Tree(2), Tree (3)]), Tree (1)])

>>> transform(seven)

7

>>> seven

Tree(7, [Tree(+), Tree(6, [Tree(*), Tree(2), Tree (3)]), Tree (1)])

"""

if t.entry in (’*’, ’+’):

args = []

for b in t.branches:

args.append(transform(b))

t.branches = [Tree(t.entry)] + t.branches

t.entry = calc_apply(t.entry , args)

return t.entry

7

4. (12 points) Lazy Sunday

(a) (4 pt) A flat-map operation maps a function over a sequence and flattens the result. Implement the flat_map
method of the FlatMapper class. You may use at most 3 lines of code, indented however you choose.

class FlatMapper:

"""A FlatMapper takes a function fn that returns an iterable value. The

flat_map method takes an iterable s and returns a generator over all values

that are within the iterables returned by calling fn on each element of s.

>>> stutter = lambda x: [x, x]

>>> m = FlatMapper(stutter)

>>> g = m.flat_map ((2, 3, 4, 5))

>>> type(g)

<class ’generator ’>

>>> list(g)

[2, 2, 3, 3, 4, 4, 5, 5]

"""

def __init__(self , fn):

self.fn = fn

def flat_map(self , s):

for x in s:

for r in self.fn(x):

yield r

(b) (2 pt) Define cycle that returns a Stream repeating the digits 1, 3, 0, 2, and 4. Hint: (3+2)%5 equals 0.

def cycle(start =1):

""" Return a stream repeating 1, 3, 0, 2, 4 forever.

>>> first_k(cycle(), 11) # Return the first 11 elements as a list

[1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1]

"""

def compute_rest ():

return cycle ((start +2) % 5)

return Stream(start , compute_rest)

8

(c) (4 pt) Implement the Scheme procedure directions, which takes a number n and a symbol sym that is
bound to a nested list of numbers. It returns a Scheme expression that evaluates to n by repeatedly applying
car and cdr to the nested list. Assume that n appears exactly once in the nested list bound to sym.

Hint : The implementation searches for the number n in the nested list s that is bound to sym. The returned
expression is built during the search. See the tests at the bottom of the page for usage examples.

(define (directions n sym)

(define (search s exp)

; Search an expression s for n and return an expression based on exp.

(cond ((number? s) (if (= s n) exp nil))

((null? s) nil)

(else (search -list s exp))))

(define (search -list s exp)

; Search a nested list s for n and return an expression based on exp.

(let ((first (search (car s) (list ’car exp)))

(rest (search (cdr s) (list ’cdr exp))))

(if (null? first) rest first)))

(search (eval sym) sym))

(define a ’(1 (2 3) ((4))))

(directions 1 ’a)

; expect (car a)

(directions 2 ’a)

; expect (car (car (cdr a)))

(define b ’((3 4) 5))

(directions 4 ’b)

; expect (car (cdr (car b)))

(d) (2 pt) What expression will (directions 4 ’a) evaluate to?

(car (car (car (cdr (cdr a)))))

9

5. (18 points) Basis Loaded

Ben Bitdiddle notices that any positive integer can be expressed as a sum of powers of 2. Some examples:

11 = 8 + 2 + 1

23 = 16 + 4 + 2 + 1

24 = 16 + 8

45 = 32 + 8 + 4 + 1

2014 = 1024 + 512 + 256 + 128 + 64 + 16 + 8 + 4 + 2

A basis is a linked list of decreasing integers (such as powers of 2) with the property that any positive integer
n can be expressed as the sum of elements in the basis, starting with the largest element that is less than or
equal to n.

(a) (4 pt) Implement sum_to, which takes a positive integer n and a linked list of decreasing integers basis. It
returns a linked list of elements of the basis that sum to n, starting with the largest element of basis that
is less than or equal to n. If no such sum exists, raise an ArithmeticError. Each number in basis can
only be used once (or not at all). The Link class is described on your Midterm 2 Study Guide.

def sum_to(n, basis):

""" Return a sublist of linked list basis that sums to n.

>>> twos = Link(32, Link(16, Link(8, Link(4, Link(2, Link (1))))))

>>> sum_to (11, twos)

Link(8, Link(2, Link (1)))

>>> sum_to (24, twos)

Link(16, Link (8))

>>> sum_to (45, twos)

Link(32, Link(8, Link(4, Link (1))))

>>> sum_to (32, twos)

Link (32)

"""

if n == 0:

return Link.empty

elif basis == Link.empty:

raise ArithmeticError

elif basis.first > n:

return sum_to(n, basis.rest)

else:

return Link(basis.first , sum_to(n-basis.first , basis.rest))

10

(b) (6 pt) Cross out as many lines as possible in the implementation of the FibLink class so that all doctests
pass. A FibLink is a subclass of Link that contains decreasing Fibonacci numbers. The up_to method
returns a FibLink instance whose first element is the largest Fibonacci number that is less than or equal to
positive integer n.

class FibLink(Link):

""" Linked list of Fibonacci numbers.

>>> ten = FibLink(2, FibLink (1)). up_to (10)

>>> ten

Link(8, Link(5, Link(3, Link(2, Link (1)))))

>>> ten.up_to (1)

Link (1)

>>> six , thirteen = ten.up_to(6), ten.up_to (13)

>>> six

Link(5, Link(3, Link(2, Link (1))))

>>> thirteen

Link(13, Link(8, Link(5, Link(3, Link(2, Link (1))))))

"""

@property

def successor(self):

return self.first + self.rest.first

def up_to(self , n):

if self.first == n:

return self

elif self.first > n:

return self.rest.up_to(n)

elif self.successor > n:

return self

else:

return FibLink(self.successor , self). up_to(n)

(c) (2 pt) Circle the Θ expression below that describes the number of calls made to FibLink.up_to when

evaluating FibLink(2, FibLink(1)).up_to(n). The constant φ is 1+
√
5

2 = 1.618...

Θ(1) Θ(logφ n) Θ(n) Θ(n2) Θ(φn)

11

(d) (2 pt) Alyssa P. Hacker remarks that Fibonacci numbers also form a basis. How many total calls to
FibLink.up_to will be made while evaluating all the doctests of the fib_basis function below? Assume
that sum_to and FibLink are implemented correctly. Write your answer in the box.

+

* 1

2 3

Original format: Alternative: 7

6 1

* 32

+

10

def fib_basis ():

""" Fibonacci basis with caching.

>>> r = fib_basis ()

>>> r(11)

Link(8, Link (3))

>>> r(23)

Link(21, Link (2))

>>> r(24)

Link(21, Link (3))

>>> r(45)

Link(34, Link(8, Link (3)))

"""

fibs = FibLink(2, FibLink (1))

def represent(n):

nonlocal fibs

fibs = fibs.up_to(n)

return sum_to(n, fibs)

return represent

(e) (4 pt) Implement fib_sums, a function that takes positive integer n and returns the number of ways that n
can be expressed as a sum of unique Fibonacci numbers. Assume that FibLink is implemented correctly.

def fib_sums(n):

""" The number of ways n can be expressed as a sum of unique Fibonacci numbers.

>>> fib_sums (9) # 8+1, 5+3+1

2

>>> fib_sums (12) # 8+3+1

1

>>> fib_sums (13) # 13, 8+5, 8+3+2

3

"""

def sums(n, fibs):

if n == 0:

return 1

elif fibs == Link.empty or n < 0:

return 0

a = sums(n-fibs.first , fibs.rest)

b = sums(n, fibs.rest)

return a + b

return sums(n, FibLink(2, FibLink (1)). up_to(n))

12

6. (8 points) Sequels

Assume that the following table of movie ratings has been created.

Correct output
Judgment Day

Terminator
The Matrix
Toy Story

Toy Story 2
Toy Story 3

create table ratings as

select "The Matrix" as title , 9 as rating union

select "The Matrix Reloaded", 7 union

select "The Matrix Revolutions", 5 union

select "Toy Story", 8 union

select "Toy Story 2", 8 union

select "Toy Story 3", 9 union

select "Terminator", 8 union

select "Judgment Day", 9 union

select "Rise of the Machines", 5;

The correct output table for both questions below happens to be the same. It appears above to the right for
your reference. Do not hard code your solution to work only with this table! Your implementations
should work correctly even if the contents of the ratings table were to change.

(a) (2 pt) Select the titles of all movies that have a rating greater than 7 in alphabetical order.

select title from ratings where rating > 7 order by title;

(b) (6 pt) Select the titles of all movies for which at least 2 other movies have the same rating. The results
should appear in alphabetical order. Repeated results are acceptable. You may only use the SQL features
introduced in this course.

with

groups(name , score , n) as (

select title , rating , 1 from ratings union

select title , score , n+1 from groups , ratings

where title > name and rating=score

)

select title from groups , ratings

where rating=score and n > 2 order by title;

