
CS 61A Structure and Interpretation of Computer Programs

Fall 2014 Final Exam

INSTRUCTIONS

• You have 3 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5” ⇥ 11”
crib sheet of your own creation and the 3 o�cial 61A midterm study guides attached to the back of this exam.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation.

Last name

First name

SID

Login

TA & section time

Name of the person to
your left

Name of the person to
your right

All the work on this exam
is my own. (please sign)

For sta↵ use only

Q. 1 Q. 2 Q. 3 Q. 4 Q. 5 Q. 6 Total

/14 /16 /12 /12 /18 /8 /80

2

Blank Page

3

1. (14 points) Representing Scheme Lists

For each row below, write the output displayed by the interactive Python interpreter when the expression is
evaluated. Expressions are evaluated in order, and expressions may a↵ect later expressions.

Whenever the interpreter would report an error, write Error. You should include any lines displayed before
an error. Reminder : The interactive interpreter displays the repr string of the value of a successfully evaluated
expression, unless it is None.

The Pair class from Project 4 is described on your final study guide. Recall that its __str__ method returns
a Scheme expression, and its __repr__ method returns a Python expression. The full implementation of Pair
and nil appear at the end of the exam as an appendix. Assume that you have started Python 3, loaded Pair

and nil from scheme reader.py, then executed the following:

blue = Pair(3, Pair(4, nil))

gold = Pair(Pair(6, 7), Pair(8, 9))

def process(s):

cal = s

while isinstance(cal , Pair):

cal.bear = s

cal = cal.second

if cal is s:

return cal

else:

return Pair(cal , Pair(s.first , process(s.second)))

def display(f, s):

if isinstance(s, Pair):

print(s.first , f(f, s.second))

y = lambda f: lambda x: f(f, x)

Expression Output
Pair(1, nil)

Pair(1, nil)

print(Pair(1, nil))

(1)

1/0

Error

print(print(3), 1/0)

print(Pair(2, blue))

print(gold)

Expression Output
process(blue.second)

print(process(gold))

gold.second.bear.first

y(display)(gold)

4

2. (16 points) Environments

(a) (8 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

f1: ___________ [parent=____________]

Return Value

f2: ___________ [parent=____________]

Return Value

def tattoo(heart):
 def mom():
 nonlocal mom
 mom = lambda: heart(2) + 1
 return 3
 return mom() + mom() + 4

tattoo(lambda ink: ink + 0.5)

Global frame tattoo
func tattoo(heart) [parent=Global]

 1
 2
 3
 4
 5
 6
 7
 8

f3: ___________ [parent=____________]

Return Value

f4: ___________ [parent=____________]

Return Value

5

(b) (6 pt) For the six-line program below, fill in the three environment diagrams that would result after executing
each pair of lines in order. You must use box-and-pointer diagrams to represent list values. You
do not need to write the word “list” or write index numbers.

Important: All six lines of code are executed in order! Line 3 is executed after line 2 and line 5 after line 4.

meow = [1, 2]
cat = [meow, [4, 5]]

Global frame meow

cat

cat[0][1] = cat[1][0]
cat[meow[0]][0] = meow

meow[0] = [cat.pop(0)]
cat.extend(cat[0][1:])

 1
 2

 3
 4

 5
 6

Global frame meow

cat

Global frame meow

cat

1 2

(c) (2 pt) Circle the value, True or False, of each expression below when evaluated in the environment created
by executing all six lines above. If you leave this question blank, you will receive 1 point.

Circle True or False: meow is cat[0]

Circle True or False: meow[0][0] is cat[0][0]

6

3. (12 points) Expression Trees

Your partner has created an interpreter for a language that can add or multiply positive integers. Expressions
are represented as instances of the Tree class and must have one of the following three forms:

• (Primitive) A positive integer entry and no branches, representing an integer
• (Combination) The entry ’+’, representing the sum of the values of its branches
• (Combination) The entry ’*’, representing the product of the values of its branches

The Tree class is on the Midterm 2 Study Guide. The sum of no values is 0. The product of no values is 1.

(a) (6 pt) Unfortunately, multiplication in Python is broken on your computer. Implement eval_with_add,
which evaluates an expression without using multiplication. You may fill the blanks with names or call
expressions, but the only way you are allowed to combine two numbers is using addition.

def eval_with_add(t):

""" Evaluate an expression tree of * and + using only addition.

>>> plus = Tree(’+’, [Tree(2), Tree (3)])

>>> eval_with_add(plus)

5

>>> times = Tree(’*’, [Tree(2), Tree (3)])

>>> eval_with_add(times)

6

>>> deep = Tree(’*’, [Tree(2), plus , times])

>>> eval_with_add(deep)

60

>>> eval_with_add(Tree(’*’))

1

"""

if t.entry == ’+’:

return sum(__)

elif t.entry == ’*’:

total = ___

for b in t.branches:

total , term = 0, __

for ___________ in __:

total = total + term

return total

else:

return t.entry

7

(b) (6 pt) A TA suggests an alternative representation of an expression, in which the entry is the value of the
expression. For combinations, the operator appears in the left-most (index 0) branch as a leaf.

+

* 1

2 3

Original format: Alternative: 7

6 1

* 32

+

Implement transform, which takes an expression and mutates all combinations so that their entries are values
and their first branches are operators. In addition, transform should return the value of its argument. You
may use the calc_apply function defined below.

def calc_apply(operator , args):

if operator == ’+’:

return sum(args)

elif operator == ’*’:

return product(args)

def product(vals):

total = 1

for v in vals:

total *= v

return total

def transform(t):

""" Transform expression tree t to have value entries and operator leaves.

>>> seven = Tree(’+’, [Tree(’*’, [Tree(2), Tree (3)]), Tree (1)])

>>> transform(seven)

7

>>> seven

Tree(7, [Tree(+), Tree(6, [Tree(*), Tree(2), Tree (3)]), Tree (1)])

"""

if t.branches:

args = []

for b in t.branches:

args.append(__)

t.branches = ___

t.entry = __

return ___

8

4. (12 points) Lazy Sunday

(a) (4 pt) A flat-map operation maps a function over a sequence and flattens the result. Implement the flat_map
method of the FlatMapper class. You may use at most 3 lines of code, indented however you choose.

class FlatMapper:

"""A FlatMapper takes a function fn that returns an iterable value. The

flat_map method takes an iterable s and returns a generator over all values

in the iterables returned by calling fn on each element of s.

>>> stutter = lambda x: [x, x]

>>> m = FlatMapper(stutter)

>>> g = m.flat_map ((2, 3, 4, 5))

>>> type(g)

<class ’generator ’>

>>> list(g)

[2, 2, 3, 3, 4, 4, 5, 5]

"""

def __init__(self , fn):

self.fn = fn

def flat_map(self , s):

__

__

__

(b) (2 pt) Define cycle that returns a Stream repeating the digits 1, 3, 0, 2, and 4. Hint: (3+2)%5 equals 0.

def cycle(start =1):

""" Return a stream repeating 1, 3, 0, 2, 4 forever.

>>> first_k(cycle(), 12) # Return the first 12 elements as a list

[1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3]

"""

def compute_rest ():

return ___

return Stream(_____________________________ , _________________________)

9

(c) (4 pt) Implement the Scheme procedure directions, which takes a number n and a symbol sym that is
bound to a nested list of numbers. It returns a Scheme expression that evaluates to n by repeatedly applying
car and cdr to the nested list. Assume that n appears exactly once in the nested list bound to sym.

Hint : The implementation searches for the number n in the nested list s that is bound to sym. The returned
expression is built during the search. See the tests at the bottom of the page for usage examples.

(define (directions n sym)

(define (search s exp)

; Search an expression s for n and return an expression based on exp.

(cond ((number? s) __)

((null? s) nil)

(else (search -list s exp))))

(define (search -list s exp)

; Search a nested list s for n and return an expression based on exp.

(let ((first __)

(rest __))

(if (null? first) rest first)))

(search (eval sym) sym))

(define a ’(1 (2 3) ((4))))

(directions 1 ’a)

; expect (car a)

(directions 2 ’a)

; expect (car (car (cdr a)))

(define b ’((3 4) 5))

(directions 4 ’b)

; expect (car (cdr (car b)))

(d) (2 pt) What expression will (directions 4 ’a) evaluate to?

10

5. (18 points) Basis Loaded

Ben Bitdiddle notices that any positive integer can be expressed as a sum of powers of 2. Some examples:

11 = 8 + 2 + 1

23 = 16 + 4 + 2 + 1

24 = 16 + 8

45 = 32 + 8 + 4 + 1

2014 = 1024 + 512 + 256 + 128 + 64 + 16 + 8 + 4 + 2

A basis is a linked list of decreasing integers (such as powers of 2) with the property that any positive integer
n can be expressed as the sum of elements in the basis, starting with the largest element that is less than or
equal to n.

(a) (4 pt) Implement sum_to, which takes a positive integer n and a linked list of decreasing integers basis. It
returns a linked list of elements of the basis that sum to n, starting with the largest element of basis that
is less than or equal to n. If no such sum exists, raise an ArithmeticError. Each number in basis can
only be used once (or not at all). The Link class is described on your Midterm 2 Study Guide.

def sum_to(n, basis):

""" Return elements of linked list basis that sum to n.

>>> twos = Link(32, Link(16, Link(8, Link(4, Link(2, Link (1))))))

>>> sum_to (11, twos)

Link(8, Link(2, Link (1)))

>>> sum_to (23, twos)

Link(16, Link(4, Link(2, Link (1))))

>>> sum_to (24, twos)

Link(16, Link (8))

>>> sum_to (45, twos)

Link(32, Link(8, Link(4, Link (1))))

"""

if ___:

return Link.empty

elif ___:

raise ArithmeticError

elif basis.first > n:

return sum_to(n, basis.rest)

else:

return ___

11

(b) (6 pt) Cross out as many lines as possible in the implementation of the FibLink class so that all doctests
pass. A FibLink is a subclass of Link that contains decreasing Fibonacci numbers. The up_to method
returns a FibLink instance whose first element is the largest Fibonacci number that is less than or equal to
positive integer n.

class FibLink(Link):

""" Linked list of Fibonacci numbers.

>>> ten = FibLink(2, FibLink (1)). up_to (10)

>>> ten

Link(8, Link(5, Link(3, Link(2, Link (1)))))

>>> ten.up_to (1)

Link (1)

>>> six , thirteen = ten.up_to(6), ten.up_to (13)

>>> six

Link(5, Link(3, Link(2, Link (1))))

>>> thirteen

Link(13, Link(8, Link(5, Link(3, Link(2, Link (1))))))

"""

successor = self.first + self.rest

@property

def successor ():

def successor(self):

return first + rest.first

return self.first + self.rest.first

def up_to(n):

def up_to(self , n):

while self.first > n:

self = self.rest.first

self = rest

self.first = self.rest.first

if self.first == n:

return self

elif self.first > n:

return self.up_to(n)

return self.rest.up_to(n)

elif self.successor > n:

elif self.first < n:

return self

else:

return FibLink(self.successor(self), self). up_to(n)

return FibLink(self.successor , self). up_to(n)

return FibLink(self.successor(self), self.rest). up_to(n)

return FibLink(self.successor , self.rest). up_to(n)

(c) (2 pt) Circle the ⇥ expression below that describes the number of calls made to FibLink.up_to when

evaluating FibLink(2, FibLink(1)).up_to(n). The constant � is 1+
p
5

2 = 1.618...

⇥(1) ⇥(log� n) ⇥(n) ⇥(n2) ⇥(�n)

12

(d) (2 pt) Alyssa P. Hacker remarks that Fibonacci numbers also form a basis. How many total calls to
FibLink.up_to will be made while evaluating all the doctests of the fib_basis function below? Assume
that sum_to and FibLink are implemented correctly. Write your answer in the box.

+

* 1

2 3

Original format: Alternative: 7

6 1

* 32

+

def fib_basis ():

""" Fibonacci basis with caching.

>>> r = fib_basis ()

>>> r(11)

Link(8, Link (3))

>>> r(23)

Link(21, Link (2))

>>> r(24)

Link(21, Link (3))

>>> r(45)

Link(34, Link(8, Link (3)))

"""

fibs = FibLink(2, FibLink (1))

def represent(n):

nonlocal fibs

fibs = fibs.up_to(n)

return sum_to(n, fibs)

return represent

(e) (4 pt) Implement fib_sums, a function that takes positive integer n and returns the number of ways that n
can be expressed as a sum of unique Fibonacci numbers. Assume that FibLink is implemented correctly.

def fib_sums(n):

""" The number of ways n can be expressed as a sum of unique Fibonacci numbers.

>>> fib_sums (9) # 8+1, 5+3+1

2

>>> fib_sums (12) # 8+3+1

1

>>> fib_sums (13) # 13, 8+5, 8+3+2

3

"""

def sums(n, fibs):

""" Ways n can be expressed as a sum of elements in fibs."""

if n == 0:

return 1

elif ___:

return 0

a = __

b = __

return a + b

return sums(n, FibLink(2, FibLink (1)). up_to(n))

13

6. (8 points) Sequels

Assume that the following table of movie ratings has been created.

Correct output
Judgment Day
Terminator
The Matrix
Toy Story
Toy Story 2
Toy Story 3

create table ratings as

select "The Matrix" as title , 9 as rating union

select "The Matrix Reloaded", 7 union

select "The Matrix Revolutions", 5 union

select "Toy Story", 8 union

select "Toy Story 2", 8 union

select "Toy Story 3", 9 union

select "Terminator", 8 union

select "Judgment Day", 9 union

select "Rise of the Machines", 5;

The correct output table for both questions below happens to be the same. It appears above to the right for
your reference. Do not hard code your solution to work only with this table! Your implementations
should work correctly even if the contents of the ratings table were to change.

(a) (2 pt) Select the titles of all movies that have a rating greater than 7 in alphabetical order.

(b) (6 pt) Select the titles of all movies for which at least 2 other movies have the same rating. The results
should appear in alphabetical order. Repeated results are acceptable. You may only use the SQL features
introduced in this course.

with

groups(name , score , n) as (

select _____________ , _________________ , ___________ from ratings union

select _____________ , _________________ , ________ from groups , ratings

where __

)

select title from __

where __

order by ___;

14

Appendix: Pair and nil Implementations

This page does not contain a question. These classes were originally defined in scheme reader.py.

class Pair:

"""A pair has two instance attributes: first and second. For a Pair to be

a well -formed list , second is either a well -formed list or nil. Some

methods only apply to well -formed lists.

>>> s = Pair(1, Pair(2, nil))

>>> s

Pair(1, Pair(2, nil))

>>> print(s)

(1 2)

"""

def __init__(self , first , second):

self.first = first

self.second = second

def __repr__(self):

return "Pair ({0}, {1})".format(repr(self.first), repr(self.second))

def __str__(self):

s = "(" + str(self.first)

second = self.second

while isinstance(second , Pair):

s += " " + str(second.first)

second = second.second

if second is not nil:

s += " . " + str(second)

return s + ")"

class nil:

"""The empty list """

def __repr__(self):

return "nil"

def __str__(self):

return "()"

def __len__(self):

return 0

def __getitem__(self , k):

if k < 0:

raise IndexError("negative index into list")

raise IndexError("list index out of bounds")

def map(self , fn):

return self

nil = nil() # Assignment hides the nil class; there is only one instance

15

Scratch Paper

16

Scratch Paper

17

Scratch Paper

18

Scratch Paper

CS 61A Midterm 1 Study Guide – Page 1

208
mul(add(2, mul(4, 6)), add(3, 5))

add(2, mul(4, 6))
26mul

add 2
mul(4, 6)

mul 4 6

24

add(3, 5)

add 3 5

8

-2
2

-2
None

abs(number):

print(...):

display “-2”

2, 10
1024

pow(x, y):

Pure Functions

Non-Pure Functions

A name evaluates to
the value bound to
that name in the
earliest frame of
the current
environment in which
that name is found.

Defining:

Call expression:

square(x):

return mul(x, x)

>>> def

square(2+2)

Calling/Applying: square(x):

return mul(x, x)

Def
statement

Formal parameter

Body

Return
expression

(return statement)

operand: 2+2
argument: 4

operator: square
function: func square(x)

Intrinsic name

4

16Argument

Return value

 <header>:
 <statement>
 <statement>
 ...
 <separating header>:
 <statement>
 <statement>
 ... 
 ...

Compound statement

Suite

Clause

Each clause is considered in order.
1.Evaluate the header's expression.
2.If it is a true value, execute the suite, then skip the
remaining clauses in the statement.

1. Evaluate the header’s expression.
2. If it is a true value, execute the (whole) suite, then
return to step 1.

Execution rule for while statements:

Execution rule for def statements:

Execution rule for assignment statements:

Evaluation rule for call expressions:

Execution rule for conditional statements: hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single
argument (not called term)

A formal parameter that
will be bound to a function

The function bound to term
gets called here

The cube function is passed
as an argument value

0 + 13 + 23 + 33 + 43 + 55

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

Nested def statements: Functions defined within other
function bodies are bound to names in the local frame

Evaluation rule for or expressions:

Evaluation rule for and expressions:

Evaluation rule for not expressions:

Applying user-defined functions:

1.Evaluate the operator and operand subexpressions.
2.Apply the function that is the value of the operator
subexpression to the arguments that are the values of the
operand subexpressions.

1.Create a new local frame with the same parent as the
function that was applied.

2.Bind the arguments to the function's formal parameter
names in that frame.

3.Execute the body of the function in the environment
beginning at that frame.

1.Create a new function value with the specified name,
formal parameters, and function body.

2.Its parent is the first frame of the current environment.
3.Bind the name of the function to the function value in the
first frame of the current environment.

1.Evaluate the expression(s) on the right of the equal sign.
2.Simultaneously bind the names on the left to those values,
in the first frame of the current environment.

1.Evaluate the subexpression <left>.
2.If the result is a false value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

1.Evaluate <exp>; The value is True if the result is a false
value, and False otherwise.

A name is bound to a value

In a frame, there is at most
one binding per name

Statements and expressions
Red arrow points to next line. 
Gray arrow points to the line
just executed

Frames (right):Code (left):

Import statement

Assignment statement

Name Value

Binding

Local frame

Intrinsic name of
function called

Formal parameter
bound to
argument

Return value is 
not a binding!

Built-in function

User-defined
function

2

1

“y” is
not found

“y” is
not found

Error

 def abs_value(x):
!
 if x > 0:
 return x
 elif x == 0:
 return 0
 else:
 return -x

1 statement,
3 clauses, 
3 headers,
3 suites,
2 boolean 
 contexts

•An environment is a
sequence of frames

•An environment for a
non-nested function
(no def within def)
consists of one local
frame, followed by the
global frame

2

1

1

2

1

B
A B

A

A call expression and the body
of the function being called
are evaluated in different
environments

1.Evaluate the subexpression <left>.
2.If the result is a true value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

def fib(n):
 """Compute the nth Fibonacci number, for N >= 1."""
 pred, curr = 0, 1 # Zeroth and first Fibonacci numbers
 k = 1 # curr is the kth Fibonacci number
 while k < n:
 pred, curr = curr, pred + curr
 k = k + 1
 return curr

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.
!
 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

CS 61A Midterm 1 Study Guide – Page 2

A function that returns a function

A local
def statement

The name add_three is
bound to a function

Can refer to names in
the enclosing function

square = lambda x,y: x * y

that returns the value of "x * y"
with formal parameters x and y

A function

Must be a single expression

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both functions have as their parent the environment in which they
were defined.

• Both bind that function to the name square.

• Only the def statement gives the function an intrinsic name.

from operator import floordiv, mod
def divide_exact(n, d):
 """Return the quotient and remainder of dividing N by D.
!
 >>> q, r = divide_exact(2012, 10)
 >>> q
 201
 >>> r
 2
 """
 return floordiv(n, d), mod(n, d)

Multiple return values,
separated by commas

Multiple assignment 
to two names

•Every user-defined function has
a parent frame (often global)

•The parent of a function is the
frame in which it was defined

•Every local frame has a parent
frame (often global)

•The parent of a frame is the
parent of the function called

Evaluates to a function. 
No "return" keyword!

def curry2(f):!
 """Returns a function g such that g(x)(y) returns f(x, y)."""!
 def g(x):!
 def h(y):!
 return f(x, y)!
 return h!
 return g

• The def statement header is similar to other functions
• Conditional statements check for base cases
• Base cases are evaluated without recursive calls
• Recursive cases are evaluated with recursive calls
def sum_digits(n):!

 """Return the sum of the digits of positive integer n."""!
 if n < 10:!
 return n!
 else:!
 all_but_last, last = n // 10, n % 10!
 return sum_digits(all_but_last) + last

Currying: Transforming a multi-argument
function into a single-argument,
higher-order function.

def count_partitions(n, m):!
 if n == 0:!
 return 1!
 elif n < 0:!
 return 0!
 elif m == 0:!
 return 0!
 else:!
 with_m = count_partitions(n-m, m) !
 without_m = count_partitions(n, m-1)!
 return with_m + without_m

• Recursive decomposition:
finding simpler instances of
a problem.

• E.g., count_partitions(6, 4)
• Explore two possibilities:
• Use at least one 4
• Don't use any 4

• Solve two simpler problems:
• count_partitions(2, 4)
• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

When a function is defined:
1. Create a function value: func <name>(<formal parameters>)
2. Its parent is the current frame. 

 
 

3. Bind <name> to the function value in the current frame 
(which is the first frame of the current environment).

When a function is called:
1. Add a local frame, titled with the <name> of the function being

called.
2. Copy the parent of the function to the local frame: [parent=<label>]
3. Bind the <formal parameters> to the arguments in the local frame.
4. Execute the body of the function in the environment that starts with

the local frame.

2

1

3

Nested
def

A function’s signature
has all the information
to create a local frame

• w

Is fact implemented correctly?
1. Verify the base case.
2. Treat fact as a functional abstraction!
3. Assume that fact(n-1) is correct.
4. Verify that fact(n) is correct,

assuming that fact(n-1) correct.

• Each cascade frame is
from a different call
to cascade.

• Until the Return value
appears, that call has
not completed.

• Any statement can
appear before or after
the recursive call.

grow = lambda n: f_then_g(grow, print, n//10)
shrink = lambda n: f_then_g(print, shrink, n//10)

def f_then_g(f, g, n):
 if n:
 f(n)
 g(n)

1  
12  
123 
1234 
123 
12  
1

def inverse_cascade(n):
 grow(n)
 print(n)
 shrink(n) def fib(n):!

 if n == 0:!
 return 0!
 elif n == 1:!
 return 1!
 else:!
 return fib(n-2) + fib(n-1)

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n):

Anatomy of a recursive function:

Represents
integers
exactly

Represents real
numbers

approximately

Numeric types in Python:
!
>>> type(2)
<class 'int'>
!
>>> type(1.5)
<class 'float'>
!
>>> type(1+1j)
<class 'complex'>

CS 61A Midterm 2 Study Guide — Page 1

def pair(x, y):
 """Return a functional pair."""
 def get(index):
 if index == 0:
 return x
 elif index == 1:
 return y
 return get

def select(p, i):
 """Return element i of pair p."""
 return p(i)

This function
represents a

pair

Constructor is a
higher-order function

Selector defers to
the object itself

Functional pair implementation:

>>> p = pair(1, 2)
>>> select(p, 0)
1
>>> select(p, 1)
2

>>> digits = [1, 8, 2, 8]
>>> len(digits)
4
>>> digits[3]
8
>>> [2, 7] + digits * 2
[2, 7, 1, 8, 2, 8, 1, 8, 2, 8]

>>> pairs = [[10, 20], [30, 40]]
>>> pairs[1]
[30, 40]
>>> pairs[1][0]
30

>>> pairs=[[1, 2], [2, 2], [3, 2], [4, 4]]
>>> same_count = 0

>>> for x, y in pairs:
... if x == y:
... same_count = same_count + 1
!
>>> same_count
2

A sequence of  
fixed-length sequences

A name for each element in a
fixed-length sequence

for <name> in <expression>:
 <suite>
1. Evaluate the header <expression>,

which must yield an iterable value
(a sequence)

2. For each element in that sequence,
in order:
A. Bind <name> to that element in

the current frame
B. Execute the <suite>

Executing a for statement:

Lists:

Unpacking in a 
for statement:

>>> list(range(-2, 2))
[-2, -1, 0, 1]
!
>>> list(range(4))
[0, 1, 2, 3]

..., -3, -2, -1, 0, 1, 2, 3, 4, ...

range(-2, 2)
Length: ending value - starting value
Element selection: starting value + index

List constructor

Range with a 0
starting value

[<map exp> for <name> in <iter exp> if <filter exp>]

Short version: [<map exp> for <name> in <iter exp>]

A combined expression that evaluates to a list using this
evaluation procedure:
1. Add a new frame with the current frame as its parent
2. Create an empty result list that is the value of the

expression
3. For each element in the iterable value of <iter exp>:

A. Bind <name> to that element in the new frame from step 1
B. If <filter exp> evaluates to a true value, then add

the value of <map exp> to the result list

List comprehensions:

def apply_to_all(map_fn, s):
 """Apply map_fn to each element of s.
!
 >>> apply_to_all(lambda x: x*3, range(5))
 [0, 3, 6, 9, 12]
 """
 return [map_fn(x) for x in s] 0, 3, 6, 9, 12

0, 1, 2, 3, 4

λx: x*3

 6, 7, 8, 9

 0, 1, 2, 3, 4,
 5, 6, 7, 8, 9

λx: x>5

def keep_if(filter_fn, s):
 """List elements x of s for which
 filter_fn(x) is true.
!
 >>> keep_if(lambda x: x>5, range(10))
 [6, 7, 8, 9]
 """
 return [x for x in s if filter_fn(x)]

def reduce(reduce_fn, s, initial):
 """Combine elements of s pairwise using reduce_fn,  
 starting with initial.
 """
 r = initial
 for x in s:
 r = reduce_fn(r, x)
 return r

reduce(pow, [1, 2, 3, 4], 2)

pow 2 1

pow

pow

pow

2 2

4 3

64 4

16,777,216

[

[

>>> digits = [1, 8, 2, 8]
>>> 2 in digits
True
>>> 1828 not in digits
True

>>> digits[0:2]
[1, 8]
>>> digits[1:]
[8, 2, 8]

Membership: Slicing:

Slicing creates
a new object

>>> city = 'Berkeley'
>>> len(city)
8
>>> city[3]
'k'
>>> 'here' in "Where's Waldo?"
True
>>> 234 in [1, 2, 3, 4, 5]
False
>>> [2, 3, 4] in [1, 2, 3, 4]
False

Strings as sequences:

>>> a = [10]
>>> b = [10]
>>> a == b
True
>>> b.append(20)
>>> a
[10]
>>> b
[10, 20]
>>> a == b
False

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a == b
True
>>> a
[10, 20]
>>> b
[10, 20]

>>> suits = ['coin', 'string', 'myriad']
>>> original_suits = suits
>>> suits.pop()
'myriad'
>>> suits.remove('string')
>>> suits.append('cup')
>>> suits.extend(['sword', 'club'])
>>> suits[2] = 'spade'
>>> suits
['coin', 'cup', 'spade', 'club']
>>> suits[0:2] = ['heart', 'diamond']
>>> suits
['heart', 'diamond', 'spade', 'club']
>>> original_suits
['heart', 'diamond', 'spade', 'club']

>>> nums = {'I': 1.0, 'V': 5, 'X': 10}
>>> nums['X']
10
>>> nums['I'] = 1
>>> nums['L'] = 50
>>> nums
{'X': 10, 'L': 50, 'V': 5, 'I': 1}
>>> sum(nums.values())
66
>>> dict([(3, 9), (4, 16), (5, 25)])
{3: 9, 4: 16, 5: 25}
>>> nums.get('A', 0)
0
>>> nums.get('V', 0)
5
>>> {x: x*x for x in range(3,6)}
{3: 9, 4: 16, 5: 25}

List & dictionary mutation:

Identity:
<exp0> is <exp1>
evaluates to True if both <exp0> and
<exp1> evaluate to the same object
Equality:
<exp0> == <exp1>
evaluates to True if both <exp0> and
<exp1> evaluate to equal values
Identical objects are always equal values

The parent
frame contains
the balance of

withdraw

Every call
decreases the
same balance

def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 return 'No funds'
 balance = balance - amount
 return balance
 return withdraw

>>> withdraw = make_withdraw(100)
>>> withdraw(25)
75
>>> withdraw(25)
50

x = 2Status Effect
•No nonlocal statement
•"x" is not bound locally

Create a new binding from name "x" to number 2
in the first frame of the current environment

•No nonlocal statement
•"x" is bound locally

Re-bind name "x" to object 2 in the first frame
of the current environment

•nonlocal x
•"x" is bound in a  
non-local frame
•"x" also bound locally

SyntaxError: name 'x' is parameter and nonlocal

•nonlocal x
•"x" is not bound in
a non-local frame

SyntaxError: no binding for nonlocal 'x' found

•nonlocal x
•"x" is bound in a
non-local frame

Re-bind "x" to 2 in the first non-local frame of
the current environment in which "x" is bound

You can copy a list by calling the list
constructor or slicing the list from the
beginning to the end.

�(bn)

�(n)

�(log n)

�(1)

⇥(n2)

Exponential growth. Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n)
by a factor

Linear growth. E.g., factors or exp

Logarithmic growth. E.g., exp_fast
Doubling the problem only increments R(n)
Constant. The problem size doesn't matter

Quadratic growth. E.g., overlap
Incrementing n increases R(n) by the
problem size n

Type dispatching: Look up a cross-type implementation of an
operation based on the types of its arguments
Type coercion: Look up a function for converting one type to
another, then apply a type-specific implementation.

Constants: Constant terms do not affect
the order of growth of a process

Logarithms: The base of a logarithm does
not affect the order of growth of a process

Nesting: When an inner process is repeated
for each step in an outer process,multiply
the steps in the outer and inner processes
to find the total number of steps

⇥(n) ⇥(500 · n) ⇥(
1

500
· n)

⇥(log2 n) ⇥(log10 n) ⇥(lnn)

def overlap(a, b):
 count = 0
 for item in a:
 if item in b:
 count += 1
 return count

Outer: length of a

Inner: length of b

If a and b are both length n,
then overlap takes steps⇥(n2)
Lower-order terms: The fastest-growing part
of the computation dominates the total

⇥(n2 + n)⇥(n2) ⇥(n2
+ 500 · n+ log2 n+ 1000)

R
(n

)
=

�
(f

(n
))

k 1
·f

(n
)

�
R

(n
)

�
k 2

·f
(n

)

me
an

s
th

at
 t

he
re

 a
re

 p
os

it
iv

e
co

ns
ta

nt
s
k 1
 a

nd
 k

2
su

ch
 t

ha
t

fo
r

al
l
n

la
rg

er
 t

ha
n

so
me

 m

digits

pairs

When a class is called:
1.A new instance of that class is created:
2.The __init__ method of the class is called with the new object as its first

argument (named self), along with any additional arguments provided in the
call expression.

An account instance

Idea: All bank accounts have a balance and an account holder;  
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')
>>> a.holder
'Jim'
>>> a.balance
0

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder
 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance
 def withdraw(self, amount):
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance - amount
 return self.balance

balance: 0 holder: 'Jim'

__init__ is called a
constructor

self should always be
bound to an instance of
the Account class or a
subclass of Account

A new instance is
created by calling a

class

<expression> . <name>
The <expression> can be any valid Python expression.
The <name> must be a simple name.
Evaluates to the value of the attribute looked up by <name> in the object
that is the value of the <expression>.

Dot expression

Call expression

>>> type(Account.deposit)
<class 'function'>
>>> type(a.deposit)
<class 'method'>

>>> Account.deposit(a, 5)
10
>>> a.deposit(2)
12

Function call: all
arguments within

parentheses

Method invokation:
One object before
the dot and other
arguments within

parentheses

Assignment statements with a dot expression on their left-hand side affect
attributes for the object of that dot expression
• If the object is an instance, then assignment sets an instance attribute
• If the object is a class, then assignment sets a class attribute

To evaluate a dot expression:
1. Evaluate the <expression> to the left of the dot, which yields

the object of the dot expression
2. <name> is matched against the instance attributes of that object;

if an attribute with that name exists, its value is returned
3. If not, <name> is looked up in the class, which yields a class

attribute value
4. That value is returned unless it is a function, in which case a

bound method is returned instead

or
 return super().withdraw(amount + self.withdraw_fee)

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self, amount + self.withdraw_fee)

CS 61A Midterm 2 Study Guide — Page 2

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05
>>> jim_account.interest
0.08

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

0.05

Instance
attributes of
jim_account

Instance
attributes of
tom_account

To look up a name in a class:
1. If it names an attribute in the class, return the attribute value.
2. Otherwise, look up the name in the base class, if there is one.
>>> ch = CheckingAccount('Tom') # Calls Account.__init__
>>> ch.interest # Found in CheckingAccount
0.01
>>> ch.deposit(20) # Found in Account
20
>>> ch.withdraw(5) # Found in CheckingAccount
14

empty = 'empty'
!
def link(first, rest):
 return [first, rest]
!
def first(s):
 return s[0]
!
def rest(s):
 return s[1]
!
def len_link(s):
 x = 0
 while s != empty:
 s, x = rest(s), x+1
 return x
!
def getitem_link(s, i):
 while i > 0:
 s, i = rest(s), i - 1
 return first(s)
!
def extend(s, t):
 assert is_link(s) and is_link(t)
 if s == empty:
 return t
 else:
 return link(first(s), extend(rest(s), t))
!
def apply_to_all_link(f, s):
 if s == empty:
 return s
 else:
 return link(f(first(s)), apply_to_all_link(f, rest(s)))

def partitions(n, m):
 """Return a linked list of partitions
 of n using parts of up to m.
 Each partition is a linked list.
 """
 if n == 0:
 return link(empty, empty)
 elif n < 0:
 return empty
 elif m == 0:
 return empty
 else:
 # Do I use at least one m?
 yes = partitions(n-m, m)
 no = partitions(n, m-1)
 add_m = lambda s: link(m, s)
 yes = apply_to_all_link(add_m, yes)
 return extend(yes, no)

A linked list
is a pair

The 0-indexed element of the
pair is the first element of

the linked list

The 1-indexed element
of the pair is the rest

of the linked list

"empty"
represents
the empty

list

link(1, link(2, link(3, link(4, empty) 
represents the sequence

1 2 3 4

Linked list data abstraction: Python object system:

The result of calling repr on a value is
what Python prints in an interactive session

>>> 12e12
12000000000000.0
>>> print(repr(12e12))
12000000000000.0

The result of calling str on a value is  
what Python prints using the print function

>>> print(today)
2014-10-13

str and repr are both polymorphic; they apply to any object
repr invokes a zero-argument method __repr__ on its argument

>>> today.__repr__()
'datetime.date(2014, 10, 13)'

>>> today.__str__()
'2014-10-13'

def memo(f):
 cache = {}
 def memoized(n):
 if n not in cache:
 cache[n] = f(n)
 return cache[n]
 return memoized

 class Link:
 empty = ()

Yes, this call is recursive

Some zero
length sequence

 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest
 def __getitem__(self, i):
 if i == 0:
 return self.first
 else:
 return self.rest[i-1]
 def __len__(self):
 return 1 + len(self.rest)

class Tree:
 def __init__(self, entry, branches=()):
 self.entry = entry
 for branch in branches:
 assert isinstance(branch, Tree)
 self.branches = list(branches)

Built-in isinstance
function: returns True if
branch has a class that
is or inherits from Tree

7

3

1

5 9

11
E

E: An empty tree

E E

E E

E E

class BinaryTree(Tree):
 empty = Tree(None)
 empty.is_empty = True
 def __init__(self, entry, left=empty, right=empty):
 Tree.__init__(self, entry, (left, right))
 self.is_empty = False
 @property
 def left(self):
 return self.branches[0]
 @property
 def right(self):
 return self.branches[1]

Bin = BinaryTree
t = Bin(3, Bin(1),
 Bin(7, Bin(5),
 Bin(9, Bin.empty,
 Bin(11))))

Sequence abstraction special names:

__len__

__getitem__ Element selection []

Built-in len function

Memoization:

class Stream:
 """A lazily computed linked list."""
 class empty:
 def __repr__(self):
 return 'Stream.empty'
 empty = empty()

 def __init__(self, first, compute_rest=lambda: Stream.empty):
 assert callable(compute_rest), 'compute_rest must be callable.'
 self.first = first
 self._compute_rest = compute_rest

 @property
 def rest(self):
 """Return the rest of the stream, computing it if necessary."""
 if self._compute_rest is not None:
 self._rest = self._compute_rest()
 self._compute_rest = None
 return self._rest

CS 61A Final Exam Study Guide – Page 1

Exceptions are raised with a raise statement.
raise <expression>

<expression> must evaluate to a subclass of BaseException or
an instance of one.
Exceptions are constructed like any other object. E.g.,
TypeError('Bad argument!')

try:
 <try suite>
except <exception class> as <name>:
 <except suite>
...

The <try suite> is executed first.
If, during the course of executing the
<try suite>, an exception is raised
that is not handled otherwise, and
If the class of the exception inherits
from <exception class>, then
The <except suite> is executed, with
<name> bound to the exception.

first rest
Stored

explicitly
Evaluated
lazily

Streams are lazily
computed linked lists

def integer_stream(first=1):
 def compute_rest():
 return integer_stream(first+1)
 return Stream(first, compute_rest)

def primes(positives):
 def not_divisible(x):
 return x % positives.first != 0
 def compute_rest():
 return primes(filter_stream(not_divisible, positives.rest))
 return Stream(positives.first, compute_rest)

def filter_stream(fn, s):
 if s is Stream.empty:
 return s
 def compute_rest():
 return filter_stream(fn, s.rest)
 if fn(s.first):
 return Stream(s.first, compute_rest)
 else:
 return compute_rest()

def map_stream(fn, s):
 if s is Stream.empty:
 return s
 def compute_rest():
 return map_stream(fn, s.rest)
 return Stream(fn(s.first),
 compute_rest)

>>> try:

 x = 1/0

 except ZeroDivisionError as e:

 print('handling a', type(e))

 x = 0

!
handling a <class 'ZeroDivisionError'>

>>> x

0

class FibIter:!
 def __init__(self):!
 self._next = 0!
 self._addend = 1!
!
!
 def __next__(self):!
 result = self._next!
 self._addend, self._next = self._next, self._addend + self._next!
 return result

>>> fibs = FibIter()!
>>> [next(fibs) for _ in range(10)]!
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

"Please don't reference these directly. They may change."

A stream is a linked list, but the rest
of the list is computed on demand.
Once created, Streams and Rlists can be
used interchangeably using first and rest.

for <name> in <expression>:
 <suite>

1. Evaluate the header <expression>, which yields an iterable object.
2. For each element in that sequence, in order:

A. Bind <name> to that element in the first frame of the current
environment.

B. Execute the <suite>.
An iterable object has a method __iter__ that returns an iterator.

>>> counts = [1, 2, 3]!
>>> for item in counts:!
 print(item)!
1!
2!
3

>>> items = counts.__iter__()!
>>> try:!
 while True:!
 item = items.__next__()!
 print(item)!
 except StopIteration:!
 pass

The way in which names are looked up in Scheme and Python is
called lexical scope (or static scope).
Lexical scope: The parent of a frame is the environment in
which a procedure was defined. (lambda ...)
Dynamic scope: The parent of a frame is the environment in
which a procedure was called. (mu ...)

> (define f (mu (x) (+ x y)))
> (define g (lambda (x y) (f (+ x x))))
> (g 3 7)
13

class LetterIter:!
 def __init__(self, start='a', end='e'):!
 self.next_letter = start!
 self.end = end!
!
 def __next__(self):!
 if self.next_letter >= self.end:!
 raise StopIteration!
 result = self.next_letter!
 self.next_letter = chr(ord(result)+1)!
 return result!
!
class Letters:!
 def __init__(self, start='a', end='e'):!
 self.start = start!
 self.end = end!
!
 def __iter__(self):!
 return LetterIter(self.start, self.end)!
!
def letters_generator(next_letter, end):!
 while next_letter < end:!
 yield next_letter!
 next_letter = chr(ord(next_letter)+1)

>>> a_to_c = LetterIter('a', 'c')!
>>> next(a_to_c)!
'a'!
>>> next(a_to_c)!
'b'!
>>> next(a_to_c)!
Traceback (most recent call last):!
 ...!
StopIteration!
!
>>> b_to_k = Letters('b', 'k')!
>>> first_iterator =
b_to_k.__iter__()!
>>> next(first_iterator)!
'b'!
>>> next(first_iterator)!
'c'!
>>> second_iterator = iter(b_to_k)!
>>> second_iterator.__next__()!
'b'!
>>> first_iterator.__next__()!
'd'!
!
>>> for letter in
letters_generator('a', 'e'):!
... print(letter)!
a!
b!
c!
d

• A generator is an iterator backed
by a generator function.

• Each time a generator function is
called, it returns a generator.

select "abraham" as parent, "barack" as child union
select "abraham" , "clinton" union
select "delano" , "herbert" union
select "fillmore" , "abraham" union
select "fillmore" , "delano" union
select "fillmore" , "grover" union
select "eisenhower" , "fillmore";

create table parents as

select [expression] as [name], [expression] as [name], ... ;

select [columns] ; from [table] where [condition] order by [order]

create table dogs as
 select "abraham" as name, "long" as fur union
 select "barack" , "short" union
 select "clinton" , "long" union
 select "delano" , "long" union
 select "eisenhower" , "short" union
 select "fillmore" , "curly" union
 select "grover" , "short" union
 select "herbert" , "curly";

E

F

A D G

B C H

select a.child as first, b.child as second
 from parents as a, parents as b
 where a.parent = b.parent and a.child < b.child;

First Second
barack clinton

abraham delano
abraham grover
delano groverwith

 ancestors(ancestor, descendent) as (
 select parent, child from parents union
 select ancestor, child
 from ancestors, parents
 where parent = descendent
)
select ancestor from ancestors where descendent="herbert";

ancestor
delano
fillmore

eisenhower

create table pythagorean_triples as
 with
 i(n) as (
 select 1 union select n+1 from i where n < 20
)
 select a.n as a, b.n as b, c.n as c
 from i as a, i as b, i as c
 where a.n < b.n and a.n*a.n + b.n*b.n = c.n*c.n;

a b c

3 4 5

5 12 13

6 8 10

8 15 17

9 12 15

12 16 20

Latitude Longitude Name

38 122 Berkeley

42 71 Cambridge

45 93 Minneapolis

A table has columns and rows A column has a name and a type

A row has a value for each column

Co
mp

ut
er

 A

Computer B

Message sequence of a TCP connection

Acknowledgement & synchronization request

Acknowledgement

Termination signal
Acknowledgement & termination signal

Acknowledgement

..

Data message from A to B

Data message from B to A

..

Acknowledgement

Acknowledgement

..

Scheme programs consist of expressions, which can be:
• Primitive expressions: 2, 3.3, true, +, quotient, ...
• Combinations: (quotient 10 2), (not true), ...
Numbers are self-evaluating; symbols are bound to values.
Call expressions have an operator and 0 or more operands.

A combination that is not a call expression is a special form:
• If expression: (if <predicate> <consequent> <alternative>)
• Binding names: (define <name> <expression>)
• New procedures: (define (<name> <formal parameters>) <body>)

Lambda expressions evaluate to anonymous procedures.

λ
 (lambda (<formal-parameters>) <body>)
Two equivalent expressions:
 (define (plus4 x) (+ x 4))
 (define plus4 (lambda (x) (+ x 4)))
An operator can be a combination too:
 ((lambda (x y z) (+ x y (square z))) 1 2 3)

 > (define pi 3.14)
 > (* pi 2)
 6.28

 > (define (abs x)
 (if (< x 0)
 (- x)
 x))
 > (abs -3)
 3

In the late 1950s, computer scientists used confusing names.
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list
They also used a non-obvious notation for linked lists.
• A (linked) Scheme list is a pair in which the second element is

nil or a Scheme list.
• Scheme lists are written as space-separated combinations.
• A dotted list has an arbitrary value for the second element of the

last pair. Dotted lists may not be well-formed lists.

 > (define x (cons 1 2))
 > x
 (1 . 2)
 > (car x)
 1
 > (cdr x)
 2
 > (cons 1 (cons 2 (cons 3 (cons 4 nil))))
 (1 2 3 4)

Not a well-formed list!

Symbols normally refer to values; how do we refer to symbols?
 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in
the resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

Quotation can also be applied to combinations to form lists.
 > (car '(a b c))
 a
 > (cdr '(a b c))
 (b c)

Symbols are now values

Dots can be used in a quoted list to specify the second
element of the final pair.

 > (cdr (cdr '(1 2 . 3)))
 3

However, dots appear in the output only of ill-formed lists.

 > '(1 2 . 3)
 (1 2 . 3)
 > '(1 2 . (3 4))
 (1 2 3 4)
 > '(1 2 3 . nil)
 (1 2 3)
 > (cdr '((1 2) . (3 4 . (5))))
 (3 4 5)

1 2 3

1 2 3 4 nil

1 2 3 nil

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

lines Parser expression Evaluator value

'(+ 2 2)' Pair('+', Pair(2, Pair(2, nil))) 4

4
Pair('*', Pair(Pair('+', ...)))

(* (+ 1 (- 23) (* 4 5.6)) 10)
printed as

 '(* (+ 1'
 ' (- 23)'
 ' (* 4 5.6))'
 ' 10)'

Lines forming
a Scheme
expression

A number or a Pair with an
operator as its first element A number

scheme_reader.py scalc.py

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

lines Parser expression Evaluator value

'(+ 2 2)' Pair('+', Pair(2, Pair(2, nil))) 4

4
Pair('*', Pair(Pair('+', ...)))

(* (+ 1 (- 23) (* 4 5.6)) 10)
printed as

 '(* (+ 1'
 ' (- 23)'
 ' (* 4 5.6))'
 ' 10)'

Lines forming
a Scheme
expression

A number or a Pair with an
operator as its first element A number

scheme_reader.py scalc.py

A Scheme list is written as elements in parentheses:

(<element0> <element1> ... <elementn>)

Each <element> can be a combination or atom (primitive).
(+ (* 3 (+ (* 2 4) (+ 3 5))) (+ (- 10 7) 6))
The task of parsing a language involves coercing a string
representation of an expression to the expression itself.
Parsers must validate that expressions are well-formed.

A Scheme list

 '(+ 1'
 ' (- 23)'
 ' (* 4 5.6))'

Lines Expression

A Parser takes a sequence of lines and returns an expression.

Lexical
analysis Tokens Syntactic

analysis

'(', '+', 1
'(', '-', 23, ')'
'(', '*', 4, 5.6, ')', ')'

Pair('+', Pair(1, ...))

(+ 1 (- 23) (* 4 5.6))
printed as

• Iterative process
• Checks for malformed tokens
• Determines types of tokens
• Processes one line at a time

• Tree-recursive process
• Balances parentheses
• Returns tree structure
• Processes multiple lines

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.
Each call to scheme_read consumes the input tokens for exactly
one expression.
Base case: symbols and numbers
Recursive call: scheme_read sub-expressions and combine them

Apply

Eval

Recursive calls:
• Eval(operator, operands) of call expressions
• Apply(procedure, arguments)
• Eval(sub-expressions) of special forms

Base cases:
• Primitive values (numbers)
• Look up values bound to symbols

Base cases:
• Built-in primitive procedures
Recursive calls:
• Eval(body) of user-defined procedures

Requires an
environment
for name
lookup

The structure
of the Scheme
interpreter

To apply a user-defined procedure, create a new frame in which
formal parameters are bound to argument values, whose parent
is the env of the procedure, then evaluate the body of the
procedure in the environment that starts with this new frame.

(define (f s) (if (null? s) '(3) (cons (car s) (f (cdr s)))))

(f (list 1 2))

1

Pair

2

Pair

nil[parent=g] s

[parent=g] s

[parent=g] s

g: Global frame

f LambdaProcedure instance [parent=g]

CS 61A Final Exam Study Guide – Page 2

A procedure call that has not yet returned is active. Some
procedure calls are tail calls. A Scheme interpreter should
support an unbounded number of active tail calls.
A tail call is a call expression in a tail context, which are:
• The last body expression in a lambda expression
• Expressions 2 & 3 (consequent & alternative) in a tail context

if expression
(define (factorial n k)
 (if (= n 0) k
 (factorial (- n 1)
 (* k n))))

(define (length s)
 (if (null? s) 0
 (+ 1 (length (cdr s)))))

(define (length-tail s)
 (define (length-iter s n)
 (if (null? s) n
 (length-iter (cdr s) (+ 1 n))))
 (length-iter s 0))

Recursive call is a tail call

Not a tail call

Creates a new
environment each

time a user-
defined procedure

is applied

A basic interpreter has two parts: a parser and an evaluator.

>>> s = Pair(1, Pair(2, Pair(3, nil)))!
>>> print(s)!
(1 2 3)!
>>> len(s)!
3!
>>> print(Pair(1, 2))!
(1 . 2)!
>>> print(Pair(1, Pair(2, 3)))!
(1 2 . 3)

class Pair:!
 """A Pair has first and second attributes. !
!
 For a Pair to be a well-formed list, !
 second is either a well-formed list or nil. !
 """!
 def __init__(self, first, second):!
 self.first = first!
 self.second = second

(* 3  
 (+ 4 5) 
 (* 6 7 8))

Calculator Expression

*

3 +

4 5

*

6 87

Expression Tree

secondfirst
*

secondfirst
3

secondfirst secondfirst
nil

secondfirst
+

secondfirst
4

secondfirst
5 nil

secondfirst
*

secondfirst
6

secondfirst
7

secondfirst
8 nil

Representation as Pairs

The Calculator language
has primitive expressions
and call expressions

