
PHY 137A (D. Budker) Midterm 1 Solutions
TA: Uday Varadarajan

1. Derive the general solution of the Schrödinger Equation for a free particle.

Solution: The Schrödinger Equation for a free particle is given by
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(1.1)

We use the seperation of variables trick, considering a solution of the form ψ(x, t) = ψ(x)χ(t).
Then, as in the general case, this reduces the time dependent Schrödinger equation to the time
independent Schrödinger Equation for every positive value of energy E, ψE(x, t) = ψE(x)e−iEt/�.
That is, ψE(x) is a solution to
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We make the ansatz that the general solution to this equation has the form

ψE(x) = Aeikx +Be−ikx, (1.3)

where k2 = 2mE
�2 . Plugging this into the time independent Schrödinger equation, we get that
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(Aeikx +Be−ikx) = E(Aeikx +Be−ikx) = EψE(x),

(1.4)

which shows that our ansatz is indeed a solution. That this is the most general solution follows
from the fact that a second order linear differential equation has precisely two linearly independent
solutions, and we indeed have exactly two free parameters.

Now, since the time dependent Schrödinger equation is a linear differential equation, a general
solution for a free particle is given by some normalizable superposition of the ψE(x, t) for possibly
all values of E,

ψ(x, t) =
∫ ∞

0

c(E)ψE(x, t)dE (1.5)

It is more convenient to use k instead of E as the variable of integration, so one instead writes the
most general solution as

ψ(x, t) =
1√
2π

∫ ∞

−∞
φ(k)eikx−i �k2t

2m dk. (1.6)

where φ(k) can be determined from initial conditions and the requirement that ψ(x, t) is properly
normalized.

2. Capillary waves on the surface of water are due to surface tension. They prevail over gravity waves
when the wavelengths are smaller or on the order of 1cm. For such waves, the frequency ω scales
with the wavelength according to:

ω ∝ λ−3/2 (1.7)

(a) How does the phase velocity scale with wavelength for such waves?

(b) How does the group velocity scale with wavelength?
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(c) Find the ratio of the group and phase velocities. Explain the meaning of your result.
Solution: We can use the relation between wavelength and wave vectors, k = 2π

λ to rewrite
the dispersion relation as

ω = Ck
3
2 , (1.8)

The phase velocity and group velocity are given by the expressions

Phase Velocity =
ω

k
= Ck

1
2 ∝ λ− 1

2 (1.9)

Group Velocity =
∂ω

∂k
=

3
2
Ck

1
2 ∝ λ− 1

2 . (1.10)

Thus, the ratio of the group velocity to the phase velocity is clearly 3
2 . This means that the

group of waves forming a particular packet is moving faster than any individual crest of the
wave. So, if we were far away, we would see the swell of the wave moving past us rather
quickly, but each crest would seem to lag behind the group, falling further and further behind
till it died away.

(d) Why does this question appear on a quantum mechanics test?
TA’s take: Well, understanding the behaviour of waves is after all one of the best ways to
gain intuition for the wave like behaviour of quantum particles, and nonrelativistic particles
have a dispersion relation not too different from the above relation ω ∝ λ−2. In particular,
the qualitative behaviour of matter waves is much the same as what you’ve found for capillary
waves, but with some altered constants.

3. Consider the scattering of a particle with E � mα
2�2 , from a triple δ-function potential:

V (x) = α [δ(x− a) + δ(x− b) + δ(x − c)] (1.11)

(a) What are the relative positions of the potential spikes (a, b, c) that maximize the reflection
coefficient.
Solution: The amplitude for reflection off any given well is given by

M =
iβ

1− iβ , (1.12)

where β = mα2

E�2 . Now, in the limit that E � mα2

2�2 , β � 1, and thus, we see that the reflection
amplitudes are very small, and we can approximate the reflection amplitude for scattering off
all three delta functions as the sum of the amplitudes for scattering off each delta function
seperately, along with a phase factor which accounts for the extra distance travelled by the
corresponding waves. In particular, assuming that the potential spikes are in alphabetical
order from left to right, the amplitude for reflection is given by

M3 =M +Me2ik(b−a) +Me2ik(c−a). (1.13)

We will get maximal constructive interference if the reflected waves off all three potential
spikes all have the same phase, which happens if we satisfy the conditions

2k(b− a) = 2πn (1.14)
2k(c− a) = 2πm. (1.15)

This will happen, for example, if (b−a) = π/k and (c−a) = 2π/k. In terms of the DeBroigle
wavelength of the particle λ = 2π

k , this just translates into the requirement that the potential
spikes each be seperated by half integral multiples of its DeBroigle wavelength.

(b) How does the reflection coefficient in the arrangement of part (a) compare to the reflection
coefficient from a single δ-function potential?
Solution: In this case, M3 = 3M so R = |M3|2 = 9|M |2, is nine times what we would have
found for the single delta function potential.
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4. Consider a particle of mass m confined in a potential of the form V (x) = a · x4.

(a) Sketch the relative arrangement of energy levels. Discuss whether the interval between adja-
cent levels is uniform, and if not, does it increase or decrease for higher energy levels?
Solution: This potential can be thought of as being something between the harmonic
oscillator and the infinite square well. The energy levels of the harmonic oscillator En =
(n+ 1

2 )�ω are evenly spaced, while the energy levels of the infinite square well, En = n2
�
2π2

8ma2

have an increasing interval between subsequent energy levels. Thus, we expect that the energy
levels of the potential V (x) = a·x4 should not be evenly spaced, but instead have an increasing
spacing which is, nevertheless, at a slower pace than that of the infinite square well.

(b) Up to a numerical factor, what is the energy of the lowest state.
Solution: There are many ways in which one could go about approximating the energy
of the lowest state. For example, the energy of the lowest state can be well approximated
by using the uncertainty principle and the classical Virial Theorem. Let us suppose that the
total classical energy of the bound state is E. Then, classically, the particle can be thought
of as bound to a region where V (x) < E. In particular, the size of this region is just twice the
distance from the origin to the classical turning point. The classical turning point is found
by solving

V (xc) = a · x4
c = E (1.16)

for xc, which gives us xc = (E/a)1/4. Thus, the particle can be thought of as being confined
to a region of size 2xc, which can be interpreted quantum mechanically as approximately its
uncertainty in position, ∆x = 2xc = 2(E/a)1/4. Now, the uncertainty principle tells us that
this means that its uncertainty in momentum must obey the bound

∆x∆p = 2(E/a)1/4∆p ≥ �

2
. (1.17)

Now, since the particle is bound, we expect its average momentum to be zero, so we would
expect that ∆p2 =

〈
p2
〉−〈p〉2 = 〈p2〉. This means that ∆p2/2m =

〈
p2

2m

〉
is the contribution

of the kinetic energy to the total energy of the particle. But how much of the total energy for
this system is coming from kinetic energy? Well, the classical Virial Theorem, tells us that
for a particle moving in a bounded orbit in a potential of the form V (x) = a · xn, the average
value of the kinetic and potential energies are related by:

2
〈
p2

2m

〉
= n 〈V (x)〉 (1.18)

This relation also holds in quantum mechanics, where the average values are now interpreted
as expectation values for eigenstates of the Hamiltonian. In particular, for n = 4, we see that
the average value of the potential energy is half that of the kinetic energy. Thus, we expect
that for the ground state

∆p2

2m
=

2E
3

(1.19)

Plugging this expression into the uncertainty principle

∆x∆p = 2(E/a)1/4

(
4mE
3

)1/2

≥ �

2
. (1.20)

we find that

E ≈
(√

3�a1/4

8m1/2

)4/3

. (1.21)
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(c) Calculate the numerical values of this energy (in eV )assuming that the particle is an electron,
and V (1Å) = 10eV (1Å = 10−8 cm).
Solution: Since the particle is an electron, we use the fact that its mass is 9.11× 10−31kg.
Then, evaluating the energy from above we get

E =

(√
3�a1/4

8m1/2

)4/3

=

(√
3 · 6.63× 10−34J · s · (1.6× 10−18)1/4

16π · 10−10m · (9.11× 10−31kg)1/2

)4/3

/1.6× 10−19eV/J = 1.09eV

(1.22)
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