CS61BL: Data Structures & Programming Methodology Summer 2014

Instructor: Edwin Liao Mldterm 1 July 9, 2014

Name:

Student ID Number:

Section Time:

TA:

Course Login:
cs61bl-?77?

Person on Left:
Possibly “Aisle” or “Wall”

Person on Right:
Possibly “Aisle” or “Wall”

o Fill out ALL sections on this page. (1 point)

« Do NOT turn this page until the beginning of the exam is announced.

e You should not be sitting directly next to another student.

 You may not use outside resources other than your 1 page cheat sheet.

e You have 110 minutes to complete this exam.

« Your exam should contain 6 problems over 14 pages, including the reference sheet.

e This exam comprises 15% of the points on which your final grade will be based (45 points).
« If you have a question, raise your hand and a staff member will come to help you.

o Make sure to check for corrections / clarifications that will be periodically added to the board
at the front of the room.

o Best of luck. Relax — this exam is not worth having a heart failure over.

CS61BL, Summer 2014, Midterm 1 1

" Reference Sheet: String

Here are some methods and descriptions from Java's st ring class AP that you may find useful.

Return type and signature

Method description

char charAt (int index)

Returns the char value at the specified
index.

int indexOf (String str)

Returns the index within this string of
the first occurrence of the specified sub-
string.

int indexOf (String str, int
fromIndex)

Returns the index within this string of
the first occurrence of the specified sub-
string, starting at the specified index.

int length{()

Returns the length of this string.

String replaceAll (String regex,
String replacement)

Replaces each substring of this string
that matches the given regular expres-
sion with the given replacement.

String(] split(String regex)

Splits this string around matches of the
given regular expression.

String subString(int beginIndex)

Returns a new string that is a substring
of this string.

String subString(int beginIndex,
int endIndex)

Returns a new string that is a substring
of this string.

CS61BL, Summer 2014, Midterm 1

1 Equality Checks (6 points)

Write a probablyEquals method that takes in two objects and returns true if one or more of
the following are true:

« The two objects are equal (.equals) to each other.
 The two objects are equal (==) to each other.
e The two objects have the same .toString () representation.

e Calling .hashCode () on both objects returns the same int.

Otherwise, probablyEquals returns false. Your method should never crash given any input.
You may assume that for any object instances x and y, x.equals(y) will return the same value
as y.equals (x).

Note: hashCode () is a method that returns an int. All objects inherit this method from the
Object class. For the purposes of this problem, toString () is another method that all objects
inherit from the ob ject class and that returns a St ring representation of the object.

public static boolean probablyEquals(Object objl, Object obj2) |

CS61BL, Summer 2014, Midterm 1 3

-
QWO NOOOHE WN =

11
12
13
14
15
16

OCONDODOWH WN =

NN B b2
WN - 0WONOOODWN=O

2 Whose Line is it Anyway? (4 points)

Examine the following implementations of a Point class and Line class:

public class Point {
private int myX;
private int myY;

public Point(int inputX, int inputY) {
this .myX = inputX;
this.myY = inputY;

won

}

public int getX() {
return this.myX;
}

public int getY() {
return this.myY;
}

public class Line {
private Point myP1;
private Point myP2;

public Line(Point p1, Point p2) {
this .myP1 pl;
this.myP2 = p2;

}

public String toString () {
String toRtn = "";
toRtn += (" (" + myP1.getX() + "," + myPl.getY() + ").,"):
toRtn += ("(" + myP2.getX() + "," + myP2.getY() + ")"):
return toRtn;

}

public static void main(String [} args) {
Point p1 = new Point(1, 2);
Line mylLine = new Line(pl, p1).
// Your code here
System.out. printin {(myLine);

CS61BL, Summer 2014, Midterm 1

(a) In the space below, draw the resulting box-and-arrow (a.k.a. box-and-pointer) diagram after
executing lines 18 and 19 of the Line class (up untilthe // Your code here line).

(b) In the space below, rewrite the // Your code here with a single line of code so that the
program prints out:

(1,2), (3,9

CS61BL, Summer 2014, Midterm 1 . 5

OWONDAH WN =

10{ .

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

3 Building a Knapsack (12 points)

The following code represents a knapsack that can carry items and keep track of the total weight

of the items it contains:

import java. util.ArraylList;

public class Knapsack {
protected Arraylist<String> itemNames;
private ArraylList<integer> itemWeights;
private final int weightCapacity;
private int totalWeight,

public Knapsack(int weightCapacity) {
itemNames = new Arraylist<String >();
itemWeights = new ArraylList<Integer >();
this.weightCapacity = weightCapacity;
this.totalWeight = 0;

}

public void additem(String name, int weight) {
itemNames .add (name) ;
itemWeights . add (new Integer(weight));

}

public void removeltem(String name) {
int itemindex = itemNames.indexOf(name) ;
itemNames .remove (itemindex) ;
itemWeights .remove (itemindex) ;

}

public int getTotalWeight() {
return totalWeight;
}

Example of usage (after you implement part a):

Knapsack myKnapsack = new Knapsack(5);
myKnapsack.addItem("Banana", 1);
myKnapsack.addItem("Water Bottle", 3);
myKnapsack.getTotalWeight (); // should return 4
myKnapsack.removeltem("Banana");
myKnapsack.getTotalWeight (}); // should return 3

CS61BL, Summer 2014, Midterm 1

(a) Add code to the Knapsack class so that after every method call, the totalWeight instance
variable always equals the total weight of all of the items in the Knapsack. You may or may
not have to use all of the boxes below.

Code added immediately after line ___

Code added immediately after line __

Code added immediately after line

CS618L, Summer 2014, Midterm 1 7

(b) Add code to the Knapsack class so that Knapsacks will never:

e contains two items with the same name

¢ has a total weight greater than its weight capacity

e contains an item with negative weight

o has @g@negative capacity
If a user tries to modify a Knapsack to have any of the above properties, an-
IllegalStateException (from java.lang) should be thrown with an informative error

message. Assume that the code from part (a) has been implemented correctly. You may or
may not have to use all of the boxes below.

Code added immediately after line

Code added immediately after line

Code added immediately after line

CS61BL, Summer 2014, Midterm 1 8

(c) What is another case of error checking we should add to Knapsack?

(d) Fill out the following template for a valueKnapsack class that keeps track of items’ values
in addition to their weights. You should use inheritance effectively. Don't worry about error-
checking for this part. Assume that parts (a) and (b) have been implemented correctly.

public class ValueKnapsack extends Knapsack {

private int totalValue;
private ArrayList<Integer> itemValues;

public ValueKnapsack (int weightCapacity) {

}

public void addItem(String name, int weight, int value) {

public void ;emoveItem(String name) {

public int getTotalValue() {
return totalvValue;

CS61BL, Summer 2014, Midterm 1 9

4 Acronym Extractor (7 points)

We want to code an ext ract Acronym method that returns the acronym of an input string. We
will be using the # character in place of whitespace characters for this problem (you may assume
that the input will not have any whitespace characters). An acronym consists of the first non-#
letter of the input St ring and all non-# characters that immediately follow any # character. For
example, ext ractAcronym ("Not #a##Number") would return "NaN". If there are # characters
at the end of an input St ring, we ignore them.

(a) In the table below, provide test inputs for ext ract Acronym that cover at least 4 generalized
input cases (not including the provided example). Include the input St ring, expected output
St ring, and what your test case is testing for. Do not reuse the example. Assume that the
input and return value will never be null.

What are you testing for?
Input String Expected output

(The example) Tests that
"Not#a##Number" "NaN" extractAcronym can handle cases
with multiple consecutive # characters.

CS61BL, Summer 2014, Midterm 1 10

(b) Implement the ext ractAcronym method:
i . .
| R
public static Striné extractAcronym(String input)}

CS61BL, Summer 2014, Midterm 1

11

5 Vote Iterator (10 points)

Write an iterator that takes in an Integer array of vote counts and iterates over the votes. The
input array contains the number of votes each selection received. For example, if the input array
contained the following:

Integer(]

012 110 1]0
index: O 1 2 3 4 5

then calls to next () would eventually return 1 twice (because atindex 1, the input array has value
2), 2 once, and 4 once. After that, hasNext () would return false.

Provide code for the voteIterator class below. Make sure your iterator adheres to standard
iterator rules.

import java.util.Iterator;

public class Votelterator implements Iterator<Integer> ({

public Votelterator (Integer({] votes) {

CS61BL, Summer 2014, Midterm 1 - 12

public boolean hasNext ()

public Integer next () {

public void remove () {

C861 Bl-, QU 2V 14, VIS

{

13

OCO~NOO S WN =

- .
-

12

-
(&)

6 Malicious Mallory (5 points)

Eve and Mallory are lab partners in CS61BL. Unfortunately for Eve, Mallory doesn't get along with
anyone. One day, when Eve isn't looking, Mallory codes the following method and adds calls to it

in Eve's code:

import java. util.ArraylList;

public void method () {
ApraytIST—a = new ArrayList(r,
String msgi "Code not working? Try turning your computer off and on again!";
String msg2 = "Is your code running? Then you better go catch it!";]
String msg3 = "You might have forgotten a semicolon somewhere.";
a.add(new lllegalArgumentException(msgl)).
a.add(new ArrayindexOutOfBoundsException(msg2)) .
a.add(new NumberFormatException(msg3));
int index = (int) (Math.random() = 10);
it (index >= 3) return; throw a.get(index};

oo

}

This code is meant to do nothing 70% of the time, and throw one of three random Exceptions the
other 30% of the time. Note: Math.random () returns a random double in the range (0,1).

(a) There is an error with this code. Explain what the error is, and whether it is a compile time
error, a runtime error, or a logic error.

(b) Cross out one line of code above. Rewrite this line of code below so that the code compiles,
runs, and does what Mallory intended.

CS61BL, Summer 2014, Midterm 1 14

