CS 61A Structure and Interpretation of Computer Programs

Summer 2014 MIDTERM 1 SOLUTIONS
|

INSTRUCTIONS

e You have 2 hours to complete the exam.

e The exam is closed book, closed notes, and closed electronics, except one hand-written 8.5” x 11”7 cheat sheet
of your own creation, and The Environment Diagram Rules.

e Mark your answers ON THE EXAM ITSELF. Answers outside of the space allotted to problems will not be
graded. If you are not sure of your answer you may wish to provide a brief explanation.

Full name

SID

Login

TA & section time

Name of the person to
your left

Name of the person to
your right

All the work on this exam
is my own. (please sign)

1. (1 points) Your thoughts? What makes you happy? (Alternatively, draw us a nice doodle). You can also
take this opportunity to give us feedback.

2. (8 points) What will Python output?

Include all lines that the interpreter would display. If it would display a function, then write Function. If it
would cause an error, write Error. Assume that you have started Python 3 and executed the following. These
are entered into Python exactly as written.

def welcome ():
if a == 0:
return ’hello, welcome to your exam’
return ’prepare for tricks.’

def last_night(n):
for i in range(n):
return ’exams’

pi = [3, 1, 4, 1, 5, 9, 2, 6, 5, 4]
cut = lambda thing: thing[2:]
slice_of = lambda thing: thing[2:8:2]
def mystery(x):
if x and (x + 1):
return ’mystery’
return mystery

Expression Interactive Output
4 4
print (5) 5
Error
welcome ()
‘exams’

last_night (308)

9
(lambda x, y: x + y(x)) (4, lambda y: 5)
3, 3, 3]
[3 for x in range(30) if x > 26]
2
cut(slice_of(pi))
‘stery’
cut (mystery(-1) (20))
Error

cut (mystery(20) (-1))

20
print (mystery(print (20))) Function

Login: 3

3. (12 points) Environment Diagrams

(a) (6 pt) Environmental, my dear Watson
Fill in the environment diagram that results from executing the code below until the entire program is
finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames. You
may want to keep track of the stack on the left, but this is not required.
A complete answer will:

e Add all missing names, labels, and parent annotations to all local frames.
e Add all missing values created during execution.
e Show the return value for each local frame.
e The first function created by lambda should be labelled A;, the next one should be A5, and so on.
def watson(friend): Global frame
trick = 5

def holmes():

. watson @——func watson(friend) [p=global]
return friend - 10

return holmes adler = @——>func adler(detective) [p=global]
def adler(detective): moriarty
trick = 4

return detective(trick)

moriarty = adler(watson)
moriarty()

Stack Return Value

global

Return Value

Return Value

Return Value

(b) (6 pt) Well... that escalated quickly
Note: This is a hard question. Fill in the environment diagram that results from executing the code
below until the entire program is finished, an error occurs, or all frames are filled. You may not need to use
all of the spaces or frames. You may want to keep track of the stack on the left, but this is not required.
You should be extra careful here. Hint: What is the operator? What is the operand?

A complete answer will:

e Add all missing names, labels, and parent annotations to all local frames.

e Add all missing values created during execution.

e Show the return value for each local frame.
e The first function created by lambda should be labelled A1, the next one should be As, and so on.

back = 10

def forth(forth):
back = lambda back: forth // back(15)
return back

going = forth(back)(lambda forth: 5)

Stack
global

Global frame

back
forth

going

10
o—

Return Value

Return Value

Return Value

Return Value

—>func forth(forth) [p=global]

Login: 5

4. (5 points) Here We Go Again

Define a function wheres_waldo, which takes in a linked list which may or may not contain the string ’Waldo’
as an element, and returns the index of *Waldo’ if it exists somewhere in the list, and ’Nowhere’ if it does
not. Do not assume we have get_item defined. Note that 1inked list is not a deep linked list.

def wheres_waldo(linked_list):
>>> 1st = link("Moe", link("Larry", link("Waldo", link("Curly", empty))))
>>> wheres_waldo (lst)
2
>>> wheres_waldo (link (1, 1link (2, empty)))
’Nowhere’

if linked_list == empty:
return ’Nowhere’
elif first(linked_list) == ’Waldo’:
return O
found_him = wheres_waldo(rest(linked_1list))
if found_him == ’Nowhere’:
return found_him
return 1 + found_him

5. (12 points) Piled Higher and Deeper

(a) (4 pt) Higher List Magic Write the function inhexing, which takes in a Python list of numbers 1st, a
function hex, and an integer n, and returns a new list where every nt" element is replaced by the result of
calling hex on that element.

def inhexing(lst, hex, n):
nmnn
>>> inhexing([1, 2, 3, 4, 5], lambda x: ’Poof!’, 2)
[1, ’Poof!’, 3, ’Poof!’, 5]
>>> inhexing([2, 3, 4, 5, 6, 7, 8], lambda x: x + 10, 3)
[2, 3, 14, 5, 6, 17, 8]

result = []
for i in range(len(lst)):
if (i + 1) % n == 0:
result += [hex(1lst[i])]
else:
result += [1lst[i]]
return result

(b) (8 pt) Deeper List Magic Now write deep_inhexing, for deep Python lists. It takes in a DEEP Python
list, a function, and a number. It returns a new list where every n!® element is replaced by the function
applied to that element. If it encounters a list as an element, it recurses on the sublist, resetting the counter,
even if the sublist was an nth element. Recall you can use the expression type(x) == type([]) to test if x
is a Python list. Make sure you read and understand all the doctests!

def deep_inhexing(lst, hex, n):
>>> deep_inhexing([1, 2, 3, 4, 5, 6], lambda x: x + 10, 3)
[1, 2, 13, 4, 5, 16]
>>> deep_inhexing ([1, [[2]], [3, 4, [5]1]], lambda x: ’Poof!’, 1)
[’Poof!’, [[’Poof!’]], [’Poof!’, ’Poof!’, [’Poof!’]]]
>>> deep_inhexing ([1, [2], 3], lambda x: ’Poof!’, 2)
(1, [2], 3]
>>> deep_inhexing ([1, [2, 3], 4, [56, 6]], lambda x: ’Poof!’, 2)
[1, [2, ’Poof!’], 4, [5, ’Poof!’]]
>>> deep_inhexing ([[2, 3], 4, [56, 6], [7]], lambda x: ’Poof!’, 2)
[[2, ’Poof!’], ’Poof!’, [5, ’Poof!’], [7]1]
>>> deep_inhexing ([2, [4, [6, [8, 10]]1]], lambda x: ’Poof!’, 2)
[2, [4, [6, [8, ’Poof!’]1]]

def helper(lst, counter):
if 1st == []:
return []
first, rest = 1st[0], 1lst([1:]

if type(first) == type([]):

return [helper (first, 1)] + helper(rest, counter + 1)
elif counter % n == 0:

return [hex(first)] + helper (rest, counter + 1)
else:

return [first] + helper(rest, counter + 1)
return helper(lst, 1)

6. (2 points) Data Abstraction

True or False: Code that uses ADTs may behave as normal when you commit a Data Abstraction Violation.
If True, explain why we care about ADTs. If False, explain what would break.

The statement is (write True/False): True

Explanation: We use ADT's because they help us separate the problem of how to represent data from the prob-
lem of how to use that data. This separation allows us to write cleaner, more maintainable code, which is easier
to modify. For example, we can change just the constructors and the selectors to change the representation,
and all the other code that uses the data should just work.

Login:

7. (5 points) Recursion on Tree ADT

Define a function dejavu, which takes in a tree of numbers t and a number n. It returns True if there is a path
from the root to a leaf such that the sum of the numbers along that path is n and False otherwise. Reminder:

The constructor and selectors are tree, datum and children.

def dejavu(t, n):

>>> my_tree = tree(2, [tree(3, [tree(b), tree(7)]),

>>> dejavu(my_tree, 12) # 2 -> 3 -> 7

True
>>> dejavu(my_tree, 5) # Sums of partial paths like 2
False
nnn
if children(t) == []:
return n == datum(t)

for child in children(t):
if dejavu(child, n - datum(t)):
return True
return False

8. (3 points) Orders of Growth
(a) (1 pt) Consider the following function definition:

def foo(n):
times_table = [n * i for i in range (1,
for num in times_table:
print (num)

What is the order of growth for a call to foo(n)? O(1)

(b) (1 pt) Now consider the following function definition:

def bar(m):
if n == 3:
return ’three!’
for i in range(n // 2):
bar (3)

What is the order of growth for a call to bar(n)? ©(n)

(¢) (1 pt) Now consier the following function definition:

def spam(n):
for i in range(n):
for j in range(i):
return spam(n - 1)

What is the order of growth for a call to spam(n)? O(n)

11)]

tree(4)]1)

-> 3 don’t count

9. (2 points) Newton’s Method Show how you would use Newton’s method to find the golden ratio ¢. The
golden ratio is defined as the positive solution to

@ =¢+1
Here are the functions available to you, as defined in lecture:

find_zero(f, df, x=1) # Finds the zero of the function f.
deriv (f) # Returns a function that computes f’(x)
easy_find_zero(f, x=1) # Finds the zero of the function f.

easy_find_zero(lambda x: x*x - x - 1)

10. (3 points) (Extra Credit) Halting Problem

(a) (1 pt) Describe the domain and range of will halt and also what will halt does.
Domain: Function and arguments to that function.
Range: Boolean (True or False)
will halt returns False if calling the function on the provided arguments would cause an infinite loop, and
True otherwise.

(b) (2 pt) Consider the function will return number. It takes as input a function £ and an input x to that
function. It returns True if f (x) would evaluate to a number, and False otherwise. Note in particular that
even if £ (x) would cause an error or an infinite loop, will return number would still return False. We will
use the idea that will halt does not exist to prove that will return number does not exist. Fill in the
blanks in the proof below:

Assume for contradiction will_return_number exists.

Then we can construct will_halts as follows:

def will_halt(f, x):
def g(y):
f(y)
return 8
return will_return_number (g, x)

But we know that will_halt does not exist.

So, will_return_number cannot exist.

