
CS 61A Structure and Interpretation of Computer Programs
Summer 2014 Midterm 2

INSTRUCTIONS

• You have 2 hours to complete the exam.

• The exam is closed book, closed notes, and closed electronics, except two 8.5” × 11” cheat sheets, and The
Environment Diagram Rules.

• Mark your answers ON THE EXAM ITSELF. Answers outside of the space allotted to problems will not be
graded. If you are not sure of your answer you may wish to provide a brief explanation.

Full name

SID

Login

TA & section time

Name of the person to
your left

Name of the person to
your right

All the work on this exam
is my own. (please sign)

0. (1 points) Your thoughts?

2

1. (8 points) What will Python output?

Include all lines that the interpreter would display. If it would display a function, then write Function. If it
would cause an error, write Error. Assume that you have started Python 3 and executed the following. These
are entered into Python exactly as written.

class Pet:

color = "Red"

name = "Clifford"

def __init__(self , num_legs):

print("A new pet!")

self.num_legs = num_legs

def sleep ():

print("Zzzz")

class RubberDuck(Pet):

color = "Yellow"

def __init__(self):

self.voice = print("Quack")

Pet.name = "Daisy"

name = "Daffy"

self.num_legs = Pet (0). num_legs

def debug(self):

print("What is wrong?")

return self.voice

Expression Interactive Output
print("Ducks are cool!") Ducks are cool!

p = Pet(4)

p.self.name

p.sleep()

q = RubberDuck()

p.name + q.name

print(q.debug())

Login: 3

2. (12 points) Environment Diagrams

(a) (6 pt) Saturday Morning

Fill in the environment diagram that results from executing the code below until the entire program is
finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames. You
may want to keep track of the stack on the left, but this is not required.

A complete answer will:

• Add all missing names, labels, and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

• The first function created by lambda should be labeled λ1, the next one should be λ2, and so on.

Global frame

Return Value

Return Value

Return Value

Return Value

breakfast = ‘waffles’!
def saturday(morning):!
 def breakfast(cereal):!
 nonlocal breakfast!
 breakfast = cereal!
 breakfast(morning)!
 return breakfast!
saturday(lambda morning: breakfast)(‘cereal’)!

‘waffles’

func saturday(morning)
[p=global]

breakfast

saturday

Stack

global!

4

(b) (6 pt) Box and Pointer

Fill in the enviroment diagram that results from executing the code below until the entire program is finished,
an error occurs, or all frames are filled. You may not need to use all of the spaces or frames. A complete
answer will:

• Add all missing names, labels, and parent annotations to all local frames.

• Add all missing values created during execution. This may include more box-and-pointer diagrams.

• Show the return value for each local frame.

• The first function created by lambda should be labeled λ1, the next one should be λ2, and so on.

Global frame

Return Value

Return Value

a = [1, 2, 3]!
b = [4, a, lambda: a[2][0]]!
a[0] = b[1] is a!
a[2] = b!
c = b[:]!
a[1] = c[2]()

a

Login: 5

3. (5 points) Scanning

We all know the higher order functions map, filter, and reduce. Today we’re going to talk about their not-
quite-so-famous fourth sibling, scan. Scan is like reduce, only instead of accumulating the result into a single
value, scan returns a list that contains all the intermediate values in reducing the list.

Cross out lines from the implementation of the scan function below so that all doctests pass and the imple-
mentation contains as few lines of code as possible. You may want to look at the return statement first.
Do not cross out any docstrings or doctests.

def scan(f, lst , start):

""" Returns a list containing the intermediate values of reducing the list.

>>> scan(add , [1, 2, 3, 4], 0)

[1, 3, 6, 10]

>>> scan(mul , [3, 2, 1, 0], 10)

[30, 60, 60, 0]

"""

start = []

start = 0

accumulated = f(start)

accumulated = start

def closure(item):

nonlocal accumulated

nonlocal start

accumulated = f(item)

accumulated += f(item)

accumulated = f(accumulated , item)

accumulated += f(accumulated , item)

return accumulated

return start + accumulated

return item + accumulated

return list(map(f(lst)))

return list(map(f, lst))

return list(map(closure(lst)))

return list(map(closure , lst))

6

4. (4 points) What would Python output

Include all lines that the interpreter would display. If it would display a function, then write Function. If it
would cause an error, write Error. Assume that you have started Python 3 and executed the following. These
are entered into Python exactly as written.

class SkipIterator:

""" Iterates over a range starting from the beginning and

skipping every nth element.

"""

def __init__(self , rng , n):

self.obj = rng

self.skip = n

def __iter__(self):

return self

def __next__(self):

result = self.obj.curr

self.obj.curr += self.skip

return result

class SkippedNaturals:

""" Iterable class for positive integers. """

def __init__(self):

self.curr = 0

self.skip = 1

def __iter__(self):

return SkipIterator(self , self.skip)

Expression Interactive Output
print("Skipping Rope") Skipping Rope
p = SkippedNaturals ()

twos = iter(p)

p.skip = p.skip + 1

threes = iter(p)

next(twos)

next(twos)

next(threes)

next(threes)

Login: 7

5. (3 points) Interpretation

Select which function(s) you would have to modify in order to add the new syntax features in Calculator. For
full credit, you must justify your answers with at most two sentences.

(a) (1 pt) = (equality checker) – e.g. (= 3 1) returns False

calc eval calc apply Both Neither

Justification:

(b) (1 pt) or – e.g. (or (= 5 2) (= 2 2) (\ 1 0)) returns True

calc eval calc apply Both Neither

Justification:

(c) (1 pt) Creating and calling lambdas (Assume define has been implemented.) – e.g.

(define square (lambda (x) (* x x)))

(square 4)

calc eval calc apply Both Neither

Justification:

6. (5 points) Waldo’s Revenge Scheme

Write wheres-waldo, a scheme procedure which takes in a scheme list and outputs the index of waldo if the
symbol waldo exists in the list. Otherwise, it outputs the symbol nowhere.

STk > (wheres-waldo '(moe larry waldo curly))

2

STk > (wheres-waldo '(1 2))

nowhere

(define (wheres-waldo lst)

(cond ((null? lst) 'nowhere)

(__)

(else

(let ((found-him __))

(if (equal? 'nowhere found-him)

__

__)))))

8

7. (7 points) Generatree

Here’s an implementation of a Binary Search Tree

class BST:

def __init__(self , datum , left=None , right=None):

self.datum = datum

self.left = left

self.right = right

(a) (1 pt) Draw A Tree

Use the diagram below to reflect the tree generated by the following line:

BST(10, BST(5, BST(1)), BST (42))

You may not need to use all of the circles.

(b) (6 pt) 3 .. 2 .. 1 - Generate Paths!

Now let’s add a paths method to the BST class. It will return a generator that yields all of the paths from
the root of the tree to a leaf. Each path is represented as a list containing the individual datums.

def paths(self):

""" Return a generator for all of the paths from the root to a leaf.

>>> tree = BST(10, BST(5, BST(1)), BST (42))

>>> gen = tree.paths ()

>>> next(gen)

[10, 5, 1]

>>> for path in gen:

... print(path)

...

[10, 42]

"""

if not self.right and not self.left:

__

if __

for __

__

if __

for __

__

Login: 9

8. (5 points) Dealer always win

We want to play a card game and we must evenly deal out all of the cards to each player. We have a linked
list (Link) of cards. In this case, cards are represented as numbers.

deal deck returns a Python list of linked lists of cards for each player (reverse order of how the cards were
dealt—older cards on the bottom) and a linked list of the extra cards (in the original order).

Do not call the Link constructor.

def deal_deck(linked_list , num_of_players):

""" Deals out a deck of cards.

>>> deck = Link(1, Link(2, Link(3, Link(4, Link(5, Link(6, \

Link(7, Link(8, Link(9, Link (10))))))))))

>>> list_of_cards , remainder = deal_deck(deck , 4)

>>> list_of_cards

[Link(5, Link (1)), Link(6, Link (2)), Link(7, Link (3)), Link(8, Link (4))]

>>> remainder

Link(9, Link (10))

"""

Create a list containing each player 's hand.

hands = [Link.empty for i in range(num_of_players)]

Give each player the right number of cards.

for i in range(len(linked_list)// num_of_players):

For each player

for __

linked_list , card = linked_list.rest , linked_list

Put the card in the player 's hand

__

__

return __

9. (3 points) (Extra Credit) Social Implications

(a) (1 pt) Describe what software rot is.

(b) (2 pt) Modern cryptography methods are mathematically sound. Give two ways that an attacker could still
steal information.

