University of California, Berkeley - College of Engineering
Department of Electrical Engineering and Computer Sciences
Spring 2014 Instructor: Dan Garcia 2014-05-13

& CS61C FINAL ©

After the exam, indicate on the line above where you fall in the emotion spectrum between “sad” & “smiley”...

Last Name

First Name
Student ID Number

Login | csé6lc-

Login First Letter (pleasecircle) |a b ¢ d e £ g h i j k m o p
i jJ k 1 m
VvV W X YV 2

Login Second Letter (pleasecircle) 'a b ¢ d e £ g h
n o p q r s t u

The name of your SECTION TA (please circle) Alan | Jeffrey | Kevin | Roger | Sagar | Shreyas | Sung Roa | William

Name of the person to your Left

Name of the person to your Right

All the work is my own. | had no prior knowledge of the exam
contents nor will | share the contents with others in CS61C

who have not taken it yet. (please sign)

Instructions (Read Me!)

* This booklet contains 9 numbered pages including the cover page.

Put all answers on these pages; don’t hand in any stray pieces of paper.

* Please turn off all pagers, cell phones & beepers. Remove all hats & headphones. Place your backpacks,
laptops and jackets at the front. Nothing may be placed in the “no fly zone” spare seat/desk between
students.

* You have 180 minutes to complete this exam. The exam is closed book, no computers, PDAs or calculators.
You may use two pages (US Letter, front and back) of notes and the green sheet.

* There may be partial credit for incomplete answers; write as much of the solution as you can. We will deduct
points if your solution is far more complicated than necessary. When we provide a blank, please fit your
answer within the space provided. “IEC format” refers to the mebi, tebi, etc prefixes.

* You must complete ALL THE QUESTIONS, regardless of your score on the midterm. Clobbering only
works from the Final to the Midterm, not vice versa. You have 3 hours... relax.

Question M1 M2 M3| Ms F1 F2 F3|F4] Fs Total
Minutes | 20 20 20| 60 30/30(30|30}|120 180
Points 10 | 10 10| 30 22 23122 |23]| 90 120

Score

SID:

M1) What’s that funky smell? Oh, it’s Potpourri (10 pts, 20 min)

(This is for M1a, M1b) A variant of the MIPS instruction set has been developed on the new 64-bit system for cloud
computing. To emphasize the “big” in big data, the size of the Opcode field has been increased by one bit, and the
number of registers (whose width is now 64-bits) was quadrupled. Assume that instructions “expand” the
rightmost field to fill all 64 bits. So here, the Funct field would expand; in an I-type instruction, the Immediate
would expand. You may use the boxes below as scratch space.

Opcode Rs Rt Rd Shamt Funct

a) How many total instructions can we have? Please leave your answer as an expression involving powers of 2.

b) What is the maximum amount of bytes we could change the PC by with a single branch instruction?

(Express your answer in IEC format, e.g., 32 Kibi, 16 Mebi, etc.)

typedef struct { int32_t len; double *data; } vector;
double min = -0.8, max = 1.7;

vector *filter(char *filename) {
char *extension = “.txt”;
int32_t i = 0;
vector *output = malloc(sizeof(vector));
.. // € here

c) Assume our memory is 32-bit addressed. How many bytes are allocated in each section of memory as a result of
these lines (up to “€ here”)? Include allocations ONLY from the lines shown; assume registers are not used.

Stack: Heap: Static:
d) Complete the following code so it obeys its comments: | before the call to swap_heads:
typedef struct list { . —1> —1> —>
int val; pi 2 ! 4
struct list *next;
} list; e| —3| 27| 21
...and after th head i, 11
/* Swaps values at the front of lists x and y */ an a}}:e}: gswlap_ ea s(pldel) @
void swap_heads(list *x, list *y) { (note the head values swapped):
list tmp = {y->val, x}; // new list node pi —_> 3| > 1| > 4
x = &tmp; y->val = x->next->val;
e| —>2| 4> 7| 4> 1

e) Whatis the ratio of the # of numbers a double can encode between 0.5 and 1 to
the # of numbers a double can encode between 5 and 77

(Express your answer in IEC format, e.g., 32 Kibi, 16 Mebi, etc.)

2/9

SID:

M2) Cache, money y’all (10 pts, 20 min)

We have a standard 32-bit byte-addressed MIPS machine with 4 GiB RAM, a 4-way set-associative CPU data cache
that uses 32 byte blocks, a LRU replacement policy, and has a total capacity of 16 KiB. Consider the following C code

and answer the questions below.

#define SIZE_OF_A 2048

typedef struct {
int x;
int y[3];
} node;

int count_x(node *A, int x) {
int k = 0;
for (int i = 0; i < SIZE OF_A; i++)
if (A[i].x == x) {

k++;
}
return k;
}
a) How many bits are used for the tag, index, and offset?
Tag Index Offset

b) We call count_x with all values of x from 0 to 65535 to count the number of times that

each x occurs in A. The value of A is the same in every call. The cache is cold at the

beginning of execution. What is the cache hit rate?

Questions (c) and (d) below are two independent variations on the original problem.

c) Let's say that we increase our CPU cache associativity to 8-way.

What is our cache hit rate now?

d) What would be the approximate cache rate if we changed our CPU cache to use a
Most Recently Used (MRU) cache replacement policy, and we change the cache to be
fully associative?

3/9

SID:

M3) MIPS stands for “MIPS is pretty sweet”!... (10 pts, 20 min)

a0 is a pointer to an array of ints

al is the length of the array
Use this area for your own notes

1 mystery: la $t2, loop ## (Assume this takes only 1 TAL instruction)
2 loop: addiu $t9, $a0, O ##
3 lw $t0, 0($t9) ##
4 addiu $t0, $t0, 1 ##
5 sw $t0, 0($t9) ##
6 lw $t1, 0($t2) ##
7 addiu $tl1, $t1, 4 ##
8 sw $tl, 0($t2) ##
9 addiu $al, $al, -1 ##
10 bne $al, $0, loop ##
11 jr $ra ##

a) Ata functional level, what does this code do (for “small” array arguments), called for the first time?

b) Approximately what is the most array elements this code can handle correctly (called for the first time)?
(Express your answer in IEC format, e.g., 32 Kibi, 16 Mebi, etc.)

c¢) What would happen if we exceed this value by one array element (called for the first time)?

(Mention a line number, an instruction field, and what happens when the code is run to completion in your answer)

d) You'll notice that we keep saying “called for the first time”, because this code can only be called once! Specify
three MIPS lines you could put after line 10 (sayas 10.1,10.2, 10. 3) that would allow this code to be reused.

(This code should even work if the array size is exceeded, and it didn’t crash after what you described in (c) happened)

10.1

10.2

10.3

4/9

SID:

F1) Madonna revisited: “We Are Living in a Digital World...” (22 pts, 30 mins)

a)

b)

Rewrite the following circuit
using the minimum number
of AND, OR, and NOT gates:

You must show your work above to earn points.

1

Complete the following finite state machine whose input takes on X/1
the value of ‘X', ‘Y’, or ‘Z’. The machine should outputa 1 only ifit start —(00
has seen either an odd number of Xs or an odd number of Ys.

Assume you've seen no Xs or Ys at the start state. Otherwise, the

machine should output a 0. Add no new states. The labeling of

the states as (00, 01, 10, 11) is arbitrary. We’ve added the first

transition arrow for you, which is taken if you've seen an X.

O

Consider the following circuit below. Assuming (1) the signals
all start at 0, (2) the XOR gate has no propagation delay, and
(3) the register setup, hold, and delay are all given by the small

approximate length of T (about 1/10t the clock period), fill D _ REG

0
out the following timing diagram. U
T =
| | | | | | | |
| | | I | | | |
CLOCK
l l l b—
IN : : : :

XOR

OuT

I
I
I
I
1
1
1
I
I
1
1
1
I
1
I
1
1
———

5/9

SID:

F2) V(I/0)rtual Potpourri ... (23 pts, 30 mins)

For the following questions, assume the following:
* 16-bitvirtual addresses
* 1KiB pages
* 512 KiB of physical memory with LRU page replacement policy
* Fully associative TLB with 16 entries and an LRU replacement policy

a) How many virtual pages are there per process?

b) How many bits wide is the page table base register?

For questions (c) and (d), assume only the code and the two arrays take up memory, the arrays are distinct, ALL of
code fits in 1 page, the arrays are page-aligned (start on page boundary), and this is the only process running.

char *mystrcpy(char *dst, char *src)

{
char *ptr = dst;
while (*dst++ = *src++);
return ptr;

}

c) Ifmystrcpy were called with a character string of length S,
how many page faults can occur in the worst-case scenario?

d) In the best-case scenario, how many iterations of the loop can occur before a TLB miss?
You can leave your answer as a product of two numbers.

For the next three statements, circle True or False:
e) |[True / False] RAID was invented at Cal as a way to decrease the number of disk failures in a system.
f) [True / False] RAID 1 is the most expensive RAID configuration but it offers very high availability.

g) |[True / False] Writing to disk on RAID 1 is faster than on RAID 5.

6/9

F3) Datapathology ... (22 pts, 30 mins)

Consider the single cycle datapath as
it relates to a new MIPS instruction,
store shift left logical:

ssll rd, rs, rt,

shamt

The instruction does the

following:

1) Reads the value of register

rt and shifts it left by
shamt bits.

2) Stores the result into
memory location R[rs] as
well as register rd.

Ignore pipelining for (a)-(c).

Shamt

Rw
32 32-bit
Registers

Ra Rb

SID:

Instruction<31:0>

nPC_sel—pd Instruction

Fetch Unit

<legise>
<LL9l>

MemWr
ALUQut

3 :' l l
32

WrEn Adr
Data

 ———

Memory éataMemOut
—)

v

<9:0l>
<0:6>

d Shamt Funct

Memto

a) Write the Register Transfer Language (RTL) corresponding to ss1l rd, rs, rt, shamt

b) Change as little as possible in the datapath above (draw your changes right in the figure) to enable ss11.
List all your changes below. Your modification may use muxes, wires, constants, and new control signals, but
nothing else. (You may not need all the provided boxes.)

()

(i)

(iii)

c) We now want to set all the control lines appropriately. List what each signal should be, either by an intuitive
name or {0, 1, “don’t care”}. Include any new control signals you added.

RegDst

RegWr

nPC_sel

ExtOp

ALUSrc

ALUctr

MemWr

MemtoReg

For questions (d)-(f), Assume that you have a 5-stage pipeline with no
forwarding, no interlock, and no branch delay slots. Read the code below
and answer the following questions.

d) What kind(s) of hazards exist in these lines of code?

e) How many stalls are needed to resolve them?

BRANCH:

ssll S$t0, St1,
lw $t3, 0(S$tl)
addi $t5, S$t1,
beq $t3, $t1,

$t2,

11
BRANCH

5

f) If you were to have branch delay slots but no forwarding nor interlock,
what is the optimal number of cycles one iteration of this code would take?

7/9

SID:

F4) What do you call two L’s that go together? (22 pts, 30 mins)
We will drop the lowest score of parts (a), (b), (c) and (d) below, each are worth 4 points.

We've done a lot of work throughout the semester with dot products (also called inner products), let’s switch
things up and take some outer products. Where the dot product between two column vectors is defined to be xTy,
the outer product between two is defined to be xy”. If we let 0 = xyT, then it’s straightforward to see that

0;j = x;yj.Our goal in this problem is going to be to try to parallelize this computation in a couple of different

ways, starting from the following source code:

void outer_product(float* dst, float *x, float *y, size_t n) {
for (size_t i = 0; i < n; i += 1)
for (size_t j = 0; j < n; j += 1)
dst[i*n + j] = x[i] * ¥[]l;
}

a) Using the openMP directives we learned in lab and lecture, parallelize outer_product (). You should optimize
performance while still guaranteeing correctness. You may not need every blank.

void outer_product(float* dst, float *x, float *y, size_t n) {

for (size_t i = 0; i < n; i += 1)

for (size_t j =0; j < n; j += 1)

dst[i*n + j] = x[i] * y[i1;
}

b) Now use SSE intrinsics to optimize outer_product (). You may find the following useful:
* _mm_loadu_ps(_ml28 *src)
* _mm_storeu_ps(_ ml28 *dst, = ml28 val)
* _mm_loadl_ps(float *src)
e mm_mul ps(_ ml28 a, _ ml28 b)
You may assume that n is a multiple of 4 for this part of the problem.

void outer_product(float* dst, float *x, float *y, size_t n) {
for (size_t i = 0; i < n; i += 1)
for (size_t j = 0; j < n; j += 1)

_mm_storeu_ps(&dst[i*n + j], products);

8/9

SID:

F4) What do you call two L’s that go together? (Continued)

c) Now write a CUDA kernel to compute outer products

__global__ void outer_product_kernel(float *dst, float *x, float *y, size_t n) {
size_t j threadIdx.x+blockDim.x*blockIdx.x;
size_t i = threadIdx.yt+blockDim.y*blockIdx.y;

if () |

d) Finally, we're going to use MapReduce to generate outer products. We're going to assume the existence of a
Tuple datatype that has a constructor taking in two Longs (or LongWritables), and creates a pair from the two
of them. Also assume that vectors are represented as a collection of KV pairs mapping from scalar indices to
values, while matrices are represented as KV pairs mapping tuple indices to values. Complete Map so that it
will work correctly with Reduce. You may call getN() at any time to grab the length of the vectors being
processed.

void Map(LongWritable idx, DoubleWritable val) {

for (long z = 0 ; ;) {
if (is_x_vector()) // magically detects if we’re currently processing a value from x
context.write();
else
context.write();

}

void Reduce(Tuple idx, Iterable<DoubleWritable> vals) {
context.write(idx, vals.next() * vals.next());

}

e) Which of these approaches would you expect to operate the most efficiently on medium sized inputs (order
1000 elements in each vector)? Assume that we're using hive machines, or an Amazon™ cluster like the one
used in project 2 in the case of mapreduce. Give a brief 1-2 sentence explanation of why the other approaches
would fare worse.

f) Which of these approaches would scale to the largest input before computing incorrect answers, or failing to
compute answers? Which would fail on the smallest input? Explain in 1-2 sentences.

9/9

