ME 106 Fluid Mechanics: Midterm 2
Fall 2014
Name & Discussion Section:

1. Given the unsteady flow field v = t? and v = 1 — ¢,

(a) Determine the equation y(z) describing the streamline passing through point 2 = 0 and y = 0 at
time ¢ = 2.

Equation for streamline at t = 2

v

u

dy
dx

-1
=— = yx)=-025zx+C
t=2 4

t=2

Plugging in point (0,0) we get 0 = 0 + C and therefore C' = 0. Hence,
y(x) = —0.25z

6 points total. 2 pts correct diff eq for streamline 4+ 2 pts correctly solve diff eq + 2 pts correctly
solve for C.

(b) Determine the equations z(t) and y(t) for a particle path passing through point x =0 and y =0
at time t = 2.

For x(t),
t3
i =u=1t

Since z(2) = % +C, =0, we get C, = —35.

For y(t),

2

y=u=1-t = y(t):t—5+6'y

Since y(2) =2 — % + C, =0, we get C;, = 0. Hence,

8 points total. 2 pts correct solve for generic z(t) + 2 pts correctly solve for C, + 2 pts correct solve
for generic y(t) + 2 pts correctly solve for C,,.



2. It is known that a shear flow has the velocity profile

u = ay+ by
v = 0
w = 0

Using Navier-Stokes equations, derive the pressure gradient, Vp, assuming gravity ¢ is oriented in
negative y-direction.

Plugging this velocity field into Navier-Stokes equations, we see that all terms on left hand side are zero,
and on the right hand side we see that the only non-zero term is

0*u
— =2ub .
:uayg H
Therefore, Navier-Stokes equations reduce to
Ip
0 = ——+2ub
or e
Jp
0 = —— —
Dy Py
op
0 = ——
0z
And hence
2ub
Vp= | —pg
0

9 points total. 3 pts correctly compute material derivative + 3 pts correctly compute viscous term pAv +
3 points final answer.



3. Consider the steady flow of an incompressible fluid through a bent nozzle that exits to atmospheric
conditions. Over the distance shown, viscous effects are negligible. You are given A, vy, Ae, p
(area and speed of the fluid at section 1, the exit area, and fluid density).

(a)

Solve for the gauge pressure p; in terms of given variables.

Since flow is inviscid, we can use Bernoulli equation. Ignoring gravity effects,

1 1 1
p1+ éﬂvf = 50“3 = = 5/)(“3 —v7)
Based on conservation of mass, pA;v; = pA.v. and hence v, = %Ul' Therefore

1, (A}
p1 = 5/”’1 <A_g_

8 points total. 3 pts correct Bernoulli equation (consistent with assumptions) + 3 pts correct conser-
vation of mass + 2 pts final answer.

Solve for the x- and y-components of the anchoring force to hold the nozzle in terms of variables
given. (Define control volume.)

Define CV to include fluid and nozzle as shown by dotted line above. Ignore weight of nozzle. Define
F, and F, as anchoring force components, each assumed to be in positive coordinate direction.

Use momentum equation (steady flow)

EF:/ pv(v-n)dA
cs

In x-direction,
F, = pvZA, (where v, defined above)

In y-direction,
F,4+piA = pvi(—n)A =  F,=—-pA — pui Ay

where p; defined above.

10 points total. 2 pts control volume + 3 pts correct x-momentum eqn + 3 pts correct y-momentum
eqn + 2 pts final answers.



4. The streamfunction for a “sine-sine” flow is given by ¥ = sin(7x) sin(7y).

(a) Determine the velocity field u(x,y), v(x,y).

0P .
u= o msin(mx) cos(my)

v = _Z_i) = —mcos(mx) sin(my)

4 points total. 2 pts correct u + 2 pts correct v.

(b) Show whether the flow is irrotational.

We need to determine if rotation & (or vorticity 5: 200 = V x ¥) is everywhere zero.

ik
(=5 o o
U v ow
v Ou-
_ v dup
or 0Oy
= 72 sin(7x) sin(ry) + 72 sin(7z) sin(7y)
#0

Hence flow is not irrotational.

6 points total. 3 pts for stating that irrotational implies V x ¢ = 0 + 3 pts for correctly computing

V X 7.

(c) Compute the acceleration of a fluid particle located at z = 1 and y = 0.5.

Dt ot
0, ,0 .0 Z‘
=U— +v— +w—
ox oy 0z
o o 9"
=0—+0—4+0—| v (Note w =0. And at z =1, y = 0.5 we have u = v = 0.)
ox oy 0z 0
0
=10
0
7 =0 and hence @ = 0.

Alternatively, one could directly note that (1,0.5) is a “fixed point”, i.e.,

6 points total. 2 pts for correct equation for material derivative + 4 points for correctly computing

convective acceleration.



Chapter Summary Equations:

Equation for streamlines —

u
vV av eV oV

Acceleration a=—+u—+v +w
ot ax dy 0z
D d
Material derivative Q) = Q +(V-V)()
Dt ot

Streamwise and normal components % v?

. a,=V—, a = —
of acceleration s ds nooa

. DBsys HBCV
Reynolds transport theorem (restricted form) Dr = % + pA,Voby, — plA Vb,
DBsys d
Reynolds transport theorem (general form) Dr = E[ pbd¥ + J pbV - fidA
Relative and absolute velocities V=W+V,
. d .
Conservation of mass a J pdvV + J pV - -1dA =0
Mass flowrate m = pQ = pAV
J pV - dA
Average velocity v=-~
pA

Steady flow mass conservation D gy — my =0

Moving control volume

ad
. *deVﬁ-JpW-fldA:O
mass conservation ot J. cs

Deforming control volume DM, F) R
mass conservation D ot L pdv + L pW - rdA =0
Force related to change in d . _
linear momentum ar o, eyt VeV hdd =3 Fiﬁﬁif?fsv‘éfu‘ii
Moving control volume force related o
& H H WPW -hdA = 2 Fcontenls of the
to change in linear momentum o control volume
Vector addition of absolute and relative velocities V=W+U
A oV A% A%
Acceleration of fluid particle a=—+tu—+tv—+tw—_—
Jt ox dy 0z
Vorticity [=20=V XV
J Jd(pu d(pv d(pw
Conservation of mass o» + (p) + (pv) + (pw) =0
ot ax dy 9z
d J
Stream function u= l = _i

v
dy 0x
The Navier—Stokes equations

(x direction)

u u du u ap Pu  u  Fu
pl—Ftu—+v—+w_—|=—+pg+tul 5+ 5+
ot ax Jdy 0z X 'y

(v direction)

(z direction)
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