Multiple Choice Questions

Circle one answer, unless noted. (5 points each, 30 total)

1) Which of the following molecular species are paramagnetic?

- A) N_2^{2+}
- **B)** F_2^{2-} **C)** O_2^{2+} **D)** Cl_2
- (E) Ne³⁺

2) How many radial nodes are in a 4d orbital?

- B) 2
- **C**) 3
- **D**) 4
- E) 5

3) Which of the following molecules contain sp^2 hybridization?

- A) Acetylene, C₂H₂
- B) Water, H₂O
- C) Ethane, C₂H₆

- \bigcirc Benzene, C_6H_6
- E) Ammonia, NH₃

4) Ψ^2 for the 2s orbital of Na is $\frac{27}{32\pi a_0^3} \left(2 - \frac{11r}{a_0}\right)^2 e^{\frac{-11r}{a_0}}$

The position of the node is:

- A) $r = \frac{a_0}{11}$ B) $r = \frac{2}{3}a_0$ C) $r = a_0$ D) $r = \frac{32}{27}a_0$ E $r = \frac{2}{11}a_0$

5) Which element does not have a ground state electron configuration with a half-filled d orbital (d^5)?

- A) Mn
- B) Tc
- C) Cr
- (D) Ru
- E) Mo

6) Which of the following explains why silicon-silicon multiple bonds are less common than carbon-carbon multiple bonds? Circle all that apply.

- (A) Si is less electronegative than C
- B Si atoms are larger than C atoms
- C) Si atoms are smaller than C atoms False
- (D) Si can use more than 8 valence electrons

E) The Si-Si bond is weaker than the C-C bond True, but not relevant

1 pt for each statement

Page 4 of 6

Short Answer Question #1 [15 points]

In the boxes provided, label the initial and final electron configurations for each of the following atomic and molecular photoelectron spectra. Assume only one electron is emitted.

Short Answer Question #2 [24 points total]

a) The valence atomic orbitals (AOs) for nitrogen are shown below on a molecular orbital energy-level diagram. Complete the diagram for N_2 with MO energy levels and label i) the type of orbital from which they are made, ii) whether they are σ - or π -orbitals, and iii) whether they are bonding or antibonding. [8 points]

N +2 energy level order N +2 electrons +2 oft handred at hards

+2 or/11, bonding/antibonding +2 orbital contablation/orient b) The orbital structure and order of CN⁻, a heteronuclear diatomic ion, is similar to that of N₂. Using the preplaced nitrogen AOs and your knowledge of electronegativity, predict the position on the carbon AOs and the MO energy-level diagram for CN⁻. [8 points]

N +2 energy level order (same) +2 electrons +4 C AO placement

c) Draw the lowest energy bonding orbital (excluding 1s) for N₂ in the box provided. Draw the corresponding orbital for CN⁻, showing the effect of electronegativity on the electron probability density. [4 points each]

+1 for ozs (or same orbital as Nz) +2 asymmetric e- density +1 asymmetric towards N

(or consistant w/ above diagram)

Page 6 of 6

Short Answer Question #3 [31 points total]

Ipt-show Eaxis i, ii, iii) (each) 11,111) (each)

1 point # of Elevels

1 point Elevel arrangement

1 point for x filled,

1 point for x unfilled

iv) 2 points for band formation

a) Consider the series of organic compounds:

(v) poly(acetylene)

i) ethylene

ii) butadiene

iii) octatetraene

Using the boxes provided, sketch the energy diagram for the conjugated π electrons in each system. Label the number of filled and unfilled energy levels in each case. [14 points]

b) Use the FEMO method to determine the wavelength of the HOMO-LUMO transition in octatetraene. Assume that the C bonds form a linear (180°) chain and the average C-C bond length is 0.140 Å. [14]

points

L=7(0.140Å)= 0.980Å 4points Using 1/2 bonds at end "from lecture also acceptible

4 points $\Delta E = \frac{h^2(n_{LUMO}^2 - n_{HOMO}^2)}{8m l^2}$

4 points $\lambda = \frac{hc}{\Delta E} = 3.53 \text{ nm}$

7=353 nm is also acceptable.

- c) Which molecule has the lowest (most stable) energy level for n = 1? Circle one response. [3 points]
 - A) ethylene
- B) butadiene
- octatetraene