
CS 61A Structure and Interpretation of Computer Programs

Fall 2014 Midterm 1

INSTRUCTIONS

• You have 2 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5” ⇥ 11”
crib sheet of your own creation and the o�cial 61A midterm 1 study guide attached to the back of this exam.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation.

Last name

First name

SID

Login

TA & section time

Name of the person to
your left

Name of the person to
your right

All the work on this exam
is my own. (please sign)

For sta↵ use only

Q. 1 Q. 2 Q. 3 Q. 4 Total

/12 /14 /8 /6 /40

2

1. (12 points) World Cup

(a) (10 pt) For each of the expressions in the tables below, write the output displayed by the interactive Python
interpreter when the expression is evaluated. The output may have multiple lines.

Whenever the interpreter would report an error, write Error. You should include any lines displayed before
an error.

Reminder : the interactive interpreter displays the value of a successfully evaluated expression, unless it is
None.

The first three rows have been provided as examples.

Assume that you have started Python 3 and executed the following statements:

def square(x):

return x * x

def argentina(n):

print(n)

if n > 0:

return lambda k: k(n+1)

else:

return 1 / n

def germany(n):

if n > 1:

print(’hallo’)

if argentina(n-2) >= 0:

print(’bye’)

return argentina(n+2)

Expression Interactive Output
5*5 25

print(5) 5

1/0 Error

print(1, print(2))

argentina(0)

Expression Interactive Output

argentina(1)(square)

germany(1)(square)

germany(2)(germany)

(b) (2 pt) Fill in the blank with an expression so that the whole expression below evaluates to a number.
Hint : The expression abs > 0 causes a TypeError.

(lambda t: argentina(t)(germany)(square))(_________________________________)

3

2. (14 points) Envy, Iron, Mint

(a) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names, labels, and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

f1: ___________ [parent=____________]

Return Value

f2: ___________ [parent=____________]

Return Value

f3: ___________ [parent=____________]

Return Value

def peace(today):
 harmony = love+2
 return harmony + today(love+1)

def joy(peace):
 peace, love = peace+2, peace+1
 return love // harmony
!
love, harmony = 3, 2
peace(joy)

Global frame peace

love

joy

harmony

func peace(today) [parent=Global]

func joy(peace) [parent=Global]

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

3

2

4

(b) (8 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names, labels, and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

f1: ___________ [parent=____________]

Return Value

f2: ___________ [parent=____________]

Return Value

f3: ___________ [parent=____________]

Return Value

Global frame k func k(g, b) [parent=Global]def k(g, b):
 def n(s, a):
 return g-p
 return b(n(b, p))

g, p = 3, 7
k(p+1, lambda s: g+3)

 1
 2
 3
 4
 5
 6
 7

g

p 7

3

5

3. (8 points) Express Yourself

(a) (3 pt) A k-bonacci sequence starts with K-1 zeros and then a one. Each subsequent element is the sum of
the previous K elements. The 2-bonacci sequence is the standard Fibonacci sequence. The 3-bonacci and
4-bonacci sequences each start with the following ten elements:

n: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...

kbonacci(n, 2): 0, 1, 1, 2, 3, 5, 8, 13, 21, 35, ...

kbonacci(n, 3): 0, 0, 1, 1, 2, 4, 7, 13, 24, 44, ...

kbonacci(n, 4): 0, 0, 0, 1, 1, 2, 4, 8, 15, 29, ...

Fill in the blanks of the implementation of kbonacci below, a function that takes non-negative integer n and
positive integer k and returns element n of a k-bonacci sequence.

def kbonacci(n, k):

""" Return element N of a K-bonacci sequence.

>>> kbonacci(3, 4)

1

>>> kbonacci(9, 4)

29

>>> kbonacci(4, 2)

3

>>> kbonacci(8, 2)

21

"""

if n < k - 1:

return 0

elif n == k - 1:

return 1

else:

total = 0

i = ___

while i < n:

total = total + ___

i = i + 1

return total

6

(b) (5 pt) Fill in the blanks of the following functions defined together in the same file. Assume that all
arguments to all of these functions are positive integers that do not contain any zero digits.
For example, 1001 contains zero digits (not allowed), but 1221 does not (allowed). You may assume that
reverse is correct when implementing remove.

def combine(left , right):

""" Return all of LEFT’s digits followed by all of RIGHT’s digits."""

factor = 1

while factor <= right:

factor = factor * 10

return left * factor + right

def reverse(n):

""" Return the digits of N in reverse.

>>> reverse (122543)

345221

"""

if n < 10:

return n

else:

return combine(__________________________ , __________________________)

def remove(n, digit):

""" Return all digits of N that are not DIGIT , for DIGIT less than 10.

>>> remove (243132 , 3)

2412

>>> remove (243132 , 2)

4313

>>> remove(remove (243132 , 1), 2)

433

"""

removed = 0

while n != 0:

____________ , ____________ = ____________________ , ____________________

if ___:

removed = ___

return reverse(removed)

7

4. (6 points) Lambda at Last

(a) (2 pt) Fill in the blank below with an expression so that the second line evaluates to 2014. You may
only use the names two_thousand, two, k, four, and teen and parentheses in your expression (no
numbers, operators, etc.).

two_thousand = lambda two: lambda k: __

two_thousand (7)(lambda four: lambda teen: 2000 + four + teen)

(b) (4 pt) The if_fn returns a two-argument function that can be used to select among alternatives, similar to
an if statement. Fill in the return expression of factorial so that it is defined correctly for non-negative
arguments. You may only use the names if_fn, condition, a, b, n, factorial, base, and recursive

and parentheses in your expression (no numbers, operators, etc.).

def if_fn(condition):

if condition:

return lambda a, b: a

else:

return lambda a, b: b

def factorial(n):

""" Compute N! for non -negative N. N! = 1 * 2 * 3 * ... * N.

>>> factorial (3)

6

>>> factorial (5)

120

>>> factorial (0)

1

"""

def base ():

return 1

def recursive ():

return n * factorial(n-1)

return __

8

Scratch Paper

9

Scratch Paper

10

Scratch Paper

CS 61A Midterm 1 Study Guide – Page 1

208
mul(add(2, mul(4, 6)), add(3, 5))

add(2, mul(4, 6))
26mul

add 2
mul(4, 6)

mul 4 6

24

add(3, 5)

add 3 5

8

-2
2

-2
None

abs(number):

print(...):

display “-2”

2, 10
1024

pow(x, y):

Pure Functions

Non-Pure Functions

A name evaluates to
the value bound to
that name in the
earliest frame of
the current
environment in which
that name is found.

Defining:

Call expression:

square(x):

return mul(x, x)

>>> def

square(2+2)

Calling/Applying: square(x):

return mul(x, x)

Def
statement

Formal parameter

Body

Return
expression

(return statement)

operand: 2+2
argument: 4

operator: square
function: func square(x)

Intrinsic name

4

16Argument

Return value

 <header>:
 <statement>
 <statement>
 ...
 <separating header>:
 <statement>
 <statement>
 ... 
 ...

Compound statement

Suite

Clause

Each clause is considered in order.
1.Evaluate the header's expression.
2.If it is a true value, execute the suite, then skip the
remaining clauses in the statement.

1. Evaluate the header’s expression.
2. If it is a true value, execute the (whole) suite, then
return to step 1.

Execution rule for while statements:

Execution rule for def statements:

Execution rule for assignment statements:

Evaluation rule for call expressions:

Execution rule for conditional statements: hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single
argument (not called term)

A formal parameter that
will be bound to a function

The function bound to term
gets called here

The cube function is passed
as an argument value

0 + 13 + 23 + 33 + 43 + 55

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

Nested def statements: Functions defined within other
function bodies are bound to names in the local frame

Evaluation rule for or expressions:

Evaluation rule for and expressions:

Evaluation rule for not expressions:

Applying user-defined functions:

1.Evaluate the operator and operand subexpressions.
2.Apply the function that is the value of the operator
subexpression to the arguments that are the values of the
operand subexpressions.

1.Create a new local frame with the same parent as the
function that was applied.

2.Bind the arguments to the function's formal parameter
names in that frame.

3.Execute the body of the function in the environment
beginning at that frame.

1.Create a new function value with the specified name,
formal parameters, and function body.

2.Its parent is the first frame of the current environment.
3.Bind the name of the function to the function value in the
first frame of the current environment.

1.Evaluate the expression(s) on the right of the equal sign.
2.Simultaneously bind the names on the left to those values,
in the first frame of the current environment.

1.Evaluate the subexpression <left>.
2.If the result is a false value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

1.Evaluate <exp>; The value is True if the result is a false
value, and False otherwise.

A name is bound to a value

In a frame, there is at most
one binding per name

Statements and expressions
Red arrow points to next line. 
Gray arrow points to the line
just executed

Frames (right):Code (left):

Import statement

Assignment statement

Name Value

Binding

Local frame

Intrinsic name of
function called

Formal parameter
bound to
argument

Return value is 
not a binding!

Built-in function

User-defined
function

2

1

“y” is
not found

“y” is
not found

Error

 def abs_value(x):
!
 if x > 0:
 return x
 elif x == 0:
 return 0
 else:
 return -x

1 statement,
3 clauses, 
3 headers,
3 suites,
2 boolean 
 contexts

•An environment is a
sequence of frames

•An environment for a
non-nested function
(no def within def)
consists of one local
frame, followed by the
global frame

2

1

1

2

1

B
A B

A

A call expression and the body
of the function being called
are evaluated in different
environments

1.Evaluate the subexpression <left>.
2.If the result is a true value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

def fib(n):
 """Compute the nth Fibonacci number, for N >= 1."""
 pred, curr = 0, 1 # Zeroth and first Fibonacci numbers
 k = 1 # curr is the kth Fibonacci number
 while k < n:
 pred, curr = curr, pred + curr
 k = k + 1
 return curr

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.
!
 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

CS 61A Midterm 1 Study Guide – Page 2

A function that returns a function

A local
def statement

The name add_three is
bound to a function

Can refer to names in
the enclosing function

square = lambda x,y: x * y

that returns the value of "x * y"
with formal parameters x and y

A function

Must be a single expression

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both functions have as their parent the environment in which they
were defined.

• Both bind that function to the name square.

• Only the def statement gives the function an intrinsic name.

from operator import floordiv, mod
def divide_exact(n, d):
 """Return the quotient and remainder of dividing N by D.
!
 >>> q, r = divide_exact(2012, 10)
 >>> q
 201
 >>> r
 2
 """
 return floordiv(n, d), mod(n, d)

Multiple return values,
separated by commas

Multiple assignment 
to two names

•Every user-defined function has
a parent frame (often global)

•The parent of a function is the
frame in which it was defined

•Every local frame has a parent
frame (often global)

•The parent of a frame is the
parent of the function called

Evaluates to a function. 
No "return" keyword!

def curry2(f):!
 """Returns a function g such that g(x)(y) returns f(x, y)."""!
 def g(x):!
 def h(y):!
 return f(x, y)!
 return h!
 return g

• The def statement header is similar to other functions
• Conditional statements check for base cases
• Base cases are evaluated without recursive calls
• Recursive cases are evaluated with recursive calls
def sum_digits(n):!

 """Return the sum of the digits of positive integer n."""!
 if n < 10:!
 return n!
 else:!
 all_but_last, last = n // 10, n % 10!
 return sum_digits(all_but_last) + last

Currying: Transforming a multi-argument
function into a single-argument,
higher-order function.

def count_partitions(n, m):!
 if n == 0:!
 return 1!
 elif n < 0:!
 return 0!
 elif m == 0:!
 return 0!
 else:!
 with_m = count_partitions(n-m, m) !
 without_m = count_partitions(n, m-1)!
 return with_m + without_m

• Recursive decomposition:
finding simpler instances of
a problem.

• E.g., count_partitions(6, 4)
• Explore two possibilities:
• Use at least one 4
• Don't use any 4

• Solve two simpler problems:
• count_partitions(2, 4)
• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

When a function is defined:
1. Create a function value: func <name>(<formal parameters>)
2. Its parent is the current frame. 

 
 

3. Bind <name> to the function value in the current frame 
(which is the first frame of the current environment).

When a function is called:
1. Add a local frame, titled with the <name> of the function being

called.
2. Copy the parent of the function to the local frame: [parent=<label>]
3. Bind the <formal parameters> to the arguments in the local frame.
4. Execute the body of the function in the environment that starts with

the local frame.

2

1

3

Nested
def

A function’s signature
has all the information
to create a local frame

• w

Is fact implemented correctly?
1. Verify the base case.
2. Treat fact as a functional abstraction!
3. Assume that fact(n-1) is correct.
4. Verify that fact(n) is correct,

assuming that fact(n-1) correct.

• Each cascade frame is
from a different call
to cascade.

• Until the Return value
appears, that call has
not completed.

• Any statement can
appear before or after
the recursive call.

grow = lambda n: f_then_g(grow, print, n//10)
shrink = lambda n: f_then_g(print, shrink, n//10)

def f_then_g(f, g, n):
 if n:
 f(n)
 g(n)

1  
12  
123 
1234 
123 
12  
1

def inverse_cascade(n):
 grow(n)
 print(n)
 shrink(n) def fib(n):!

 if n == 0:!
 return 0!
 elif n == 1:!
 return 1!
 else:!
 return fib(n-2) + fib(n-1)

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n):

Anatomy of a recursive function:

