
CS 170 Algorithms
Fall 2014 David Wagner MT1 Soln
I include explanations for many of the answers, to help you understand why they are correct. You
did not need to include any of these explanations in your answer.

Problem 1. [True or false] (9 points)
Circle TRUE or FALSE. Do not justify your answers on this problem.

(a) TRUE or FALSE: A connected undirected graph is guaranteed to have at least |V |−1 edges.

(b) TRUE or FALSE: A strongly connected directed graph is guaranteed to have at least |V |− 1
edges.

(c) TRUE or FALSE : In a DAG, the number of distinct paths between two vertices is at most |V |2.

Explanation: there could be as many as 2|V |−2 paths.

(d) TRUE or FALSE: Every DAG has at least one source.

Explanation: Start at an arbitrary vertex v, and repeatedly go backwards in the graph. If there
is no source, you can keep going forever. But that means some vertex will be visited twice,
and in particular, you’ll have found a cycle in the graph—so it couldn’t have been a dag in the
first place.

(e) TRUE or FALSE: Depth-first search on a connected undirected graph G will visit all of the
vertices of G.

Explanation: No matter what vertex v you start at, every vertex will be reachable from v (since
G is connected), so all vertices will be visited. (Also, DFS restarts the search and calls Explore
on any unvisited vertices, so this would be true even for a graph that is not connected.)

(f) TRUE or FALSE : After running depth-first search on a directed graph, the node with the
smallest post number is part of a source component.

Explanation: The vertex with largest post number is part of a source component.

(g) TRUE or FALSE : Suppose we have a graph where each edge weight value appears at most
twice. Then, there are at most two minimum spanning trees in this graph.

Explanation: There are 4 MSTs in the following graph:

CS 170, Fall 2014, MT1 Soln 1

a

b

c d

e

f

2

2

0
1

3

3

0

Every MST includes a− b, e− f , and c− d. Now you can choose either a− c or b− c (2
choices), and independently choose either d− e or d− f (2 choices), for 2× 2 = 4 possible
MSTs in all.

(h) TRUE or FALSE : If f (n) = O(n2) and g(n) = O(n2), then f (n) = O(g(n)).

Explanation: consider, e.g., f (n) = n2 and g(n) = n.

(i) TRUE or FALSE: If f (n) = O(g(n)) and g(n) = O(n2), then f (n) = O(n2).

(j) TRUE or FALSE: Suppose we run DFS on an undirected graph and find exactly 17 back
edges. Then the graph is guaranteed to have at least one cycle.

Explanation: If the graph has a back edge, then it has a cycle.

(k) TRUE or FALSE : DFS on a directed graph with n vertices and at least n edges is guaranteed
to find at least one back edge.

Explanation: DFS on the following graph starting at a does not find any back edge.

a

b c

(l) TRUE or FALSE: DFS on an undirected graph with n vertices and at least n edges is guaran-
teed to find at least one back edge.

Explanation: A tree has n−1 edges. Any graph with more edges than that must have a cycle.
If there’s a cycle, then DFS will find a back edge.

(m) TRUE or FALSE: Suppose we run DFS on an undirected graph, and we discover a vertex v
with pre(v) = 1 and post(v) = 2|V |. Then the graph must be connected.

Explanation: This vertex was the first to be visited and the last to finish, so all other vertices
were visited before this vertex finished. That means all other vertices are reachable from this
vertex.

(n) TRUE or FALSE : Suppose we run DFS on a directed graph, and we discover a vertex v with
pre(v) = 1 and post(v) = 2|V |. Then the graph must be strongly connected.

Explanation: Consider the graph shown in part (k).

CS 170, Fall 2014, MT1 Soln 2

(o) TRUE or FALSE : If the expected running time of an algorithm is O(n), then its worst-case
running time is also O(n).

Explanation: Consider, for example, the randomized algorithm for finding the median in an
unsorted list. Its expected running time is O(n), but its worst-case running time is O(n2).

(p) TRUE or FALSE: There is an algorithm to multiply two n-bit numbers in O(nlog2 3) time.

Explanation: Gauss’s trick (the divide-and-conquer algorithm).

(q) TRUE or FALSE: There is an algorithm to square a n-bit number in O(nlog2 3) time.

(r) TRUE or FALSE: If we had an algorithm to square a n-bit number in O(n) time, we could
multiply two n-bit numbers in O(n) time.

Explanation: xy = [(x+ y)2− x2− y2]/2. The right-hand side can be computed using three
squarings (O(n) time), two subtractions (O(n) time), and one right-shift (O(n) time), for a
total of O(n) time.

Alternatively, xy = [(x+y)2− (x−y)2]/4. Or, square z = 22n+1x+y; you can find the value of
xy in the middle bits of z2.

Problem 2. [Solving recurrences] (8 points)
You don’t need to justify your answer or show your work on this problem. Express your answer
using Θ(·) notation.

(a) What’s the solution to the recurrence T (n) = 2T (n/2)+n?

Solution: T (n) = Θ(n lgn).

Explanation: use the Master theorem. Or, recognize this as the recurrence for MergeSort.

(b) What’s the solution to the recurrence U(n) = 2U(n/2)+n lgn?

Solution: T (n) = Θ(n(lgn)2).

Explanation: Use the recursion tree method. The recursion tree has depth lgn and 2lgn = n
leaves. The extra stuff at level ` is n lg(n/2`) = n lgn− `n. For an upper bound, the extra stuff
at each level is ≤ n lgn, so the sum of all the extra stuff is ≤ n(lgn)2. For a lower bound,
sum the extra stuff at levels ` = 0,1,2, . . . ,0.5lgn; you find that the extra stuff at each such
level is ≥ 0.5n lgn, so the sum of the extra stuff at all levels is ≥ (0.5lgn)× (0.5n lgn) =
0.25n(lgn)2. Therefore the sum of the extra stuff is Θ(n(lgn)2), and the total running time is
n+Θ(n(lgn)2) = Θ(n(lgn)2).

Alternatively, you can sum the extra stuff directly:

lgn

∑
`=0

n lgn− `n = n(lgn)2−n
lgn

∑
`=0

`= n(lgn)2−n(lgn)(1+ lgn)/2 = 0.5n(lgn)2−0.5n lgn,

so the sum of the extra stuff is Θ(n(lgn)2).

CS 170, Fall 2014, MT1 Soln 3

Or, recognize this recurrence as the recurrence for the divide-and-conquer algorithm presented
in lecture for finding the closest two points in a 2D plane, and recall the solution from lecture.

Or, in a pinch, look at the recurrences and guess that U(n)≈ T (n) lgn. (This is not mathemat-
ically valid in general, but if you’re at a total loss, there are worse ways to make an informed
guess.)

(c) What’s the solution to the recurrence F(n) = F(n/2)+Θ(n)?

Solution: T (n) = Θ(n).

Explanation: This is a geometric sum. n+n/2+n/4+n/8+ · · · = Θ(n). Or, use the Master
theorem.

(d) What’s the solution to the recurrence G(n) = 0.5G(n−2)+Θ(1)?

Solution: T (n) = Θ(1).

Explanation: This is a geometric sum. 1+0.5+0.25+0.125+ · · ·= Θ(1)

Problem 3. [Fast Fourier Transform] (4 points)
Suppose we would like to evaluate a polynomial p(x) on n distinct values x1,x2, . . . ,xn, where n is
a power of two. What values of x1, . . . ,xn should we choose, so that we can use the FFT for this
purpose? Does it matter which values we pick?

Solution: Use the nth roots of unity. Yes, it matters.

Explanation: we need the x-values to be paired at each level of the recursion, so you can’t use just
any x-values. The roots of unity satisfy this requirement.

Problem 4. [Short answer] (6 points)
Answer each question with “Yes” or “No”. If you answer Yes, give a brief justification (one
sentence). If you answer No, draw a small counterexample.

(a) Suppose G is a connected, undirected graph whose edges all have positive weight. Let M be a
minimum spanning tree of this graph. Now, we modify the graph by adding 7 to the weight of
each edge. Is M guaranteed to be a minimum spanning tree of the modified graph?

Solution: Yes. This modification adds 7(|V |−1) to the total weight of all spanning trees, so it
doesn’t change which one is minimal.

Alternative solution: Yes. Kruskal’s algorithm only cares about the order of the edge weights,
not their absolute values, and adding 7 to each will not change the sorted order. (Technically,
this is not a valid justification, as we have not proved that every possible minimum spanning
tree could be output by Kruskal’s algorithm. However, it is not a bad way to get intuition, if
you couldn’t find a more rigorous justification.)

(b) Suppose G is an undirected graph whose edges all have positive length. Let P be a shortest
path from u to v. Now, we modify the graph by adding 7 to the weight of each edge. Is P
guaranteed to be a shortest path from u to v in the modified graph?

CS 170, Fall 2014, MT1 Soln 4

Solution: No.

u

b

v

1 1
3

Explanation: u→ b→ v is the shortest path in the graph above. However, if we add 7 to each
edge, the shortest path changes to u→ v.

Problem 5. [Running time analysis] (12 13 points)
You don’t need to justify your answers or show your work on this problem.

Given two 64-bit integers a,n, here is an algorithm to compute an:

Power(a,n):
1. If n = 0: return 1.
2. Return a×Power(a,n−1).

Assume throughout this problem that we don’t need to worry about overflow (an fits into a 64-bit
integer variable) and that each operation on a 64-bit integer takes O(1) time.

(a) Let T (n) denote the running time of Power(a,n). Write a recurrence relation for T (n).

Solution: T (n) = T (n−1)+Θ(1).

(b) What is the solution to your recurrence from part (a)? Use Θ(·) notation.

Solution: T (n) = Θ(n).

You are now given another algorithm for the same problem:

AltPower(a,n):
1. If n = 0: return 1.
2. If n = 1: return a.
3. If n is even:
4. Return AltPower(a×a,n/2).
5. else:
6. Return a×AltPower(a×a,(n−1)/2).

(c) Let A(n) denote the running time of AltPower(a,n). Write a recurrence relation for A(n).

Solution: T (n) = T (n/2)+Θ(1).

(d) What is the solution to your recurrence from part (c)? Use Θ(·) notation.

Solution: T (n) = Θ(lgn).

(e) Which would you expect to be faster, AltPower or Power?

Solution: AltPower.

CS 170, Fall 2014, MT1 Soln 5

Problem 6. [DFS] (8 points)

A

B

D

C

E

F

G

Perform a depth-first search on the graph above, starting from vertex A. Whenever there’s a choice
of vertices, pick the one that is alphabetically first.

(a) Fill in the table below with the pre and post number of each vertex.

A B C D E F G
pre 1 2 3 11 4 5 8

post 14 13 10 12 7 6 9

(b) Next, label each edge in the graph above as a tree, back, forward, or cross edge.

Solution: A→C and B→ E are forward edges. D→ F is a cross edge. All other edges are tree
edges. There are no back edges.

Problem 7. [Topological sorting] (6 7 points)
Consider the following graph:

(a) Which of the following orderings is not a valid topological sort of the graph?

(i) ABCDEFGH

(ii) ABCDEGFH

(iii) BACDEFGH

(iv) BACEDFGH

Explanation: there’s an edge D→ E, so D has to come before E in any valid topological sort.

(b) If we run DFS on this graph, which of the following statements must be true? Circle all that
must be true.

CS 170, Fall 2014, MT1 Soln 6

(i) post(B) > post(D)

(ii) post(G) > post(F)

(iii) post(A) > post(B)

(iv) post(D) > post(F)

Problem 8. [Shortest paths] (8 points)
Let G = (V,E) be a directed graph, with non-negative edge lengths; `(e) denotes the length of edge
e.

(a) Suppose we run Dijkstra’s algorithm starting from s. After it finishes, is it guaranteed that
dist(t) will hold the length of the shortest path from s to t? Write “yes” or “no”. Do not justify
your answer.

Solution: Yes.

(b) If we run Dijkstra’s algorithm starting from s, then after it finishes we can use the prev(·)
pointers to find a shortest path from s to t. Concisely explain how.

Solution: s→ ·· · → prev(prev(prev(t)))→ prev(prev(t))→ prev(t)→ t

(c) Is it guaranteed that the path you constructed in part (b) will have the fewest number of edges,
out of all paths from s to t of length dist(t)? If yes, write “yes” and explain why briefly. If no,
write “no” and show a small counterexample.

Solution: No.

s

a b

c t

1

3

1

2

1

Explanation: This counterexample was taken directly from the solution to HW6 Q3 (Travel
planning). Dijkstra’s algorithm will return the path s → a → b → t, but the one with the
smallest number of edges is just s→ c→ t.

Comment: Be careful. The following graph is not a valid counterexample, at least not for the
version of Dijkstra’s algorithm shown in the book:

s

a

t

1

3

2

CS 170, Fall 2014, MT1 Soln 7

The version of Dijkstra’s algorithm shown in the book returns the path s→ t, which is the one
with the fewest number of edges. It visits the vertices in the order s,a, t. When visiting s, it
sets d(t) to 3 and prev(t) to s. When visiting a, it computes d(a)+ `(a, t) = 1+2 = 3, notices
that this is not smaller than d(t), and does not update d(t) or prev(t). Thus it terminates with
prev(t) = s, corresponding to the path s→ t.

This would be a valid counterexample for a variant of Dijkstra’s algorithm where we change
the condition d(u)+`(u,v)< d(v) to d(u)+`(u,v)≤ d(v), but that feels a bit artificial (there’s
no clear reason to make this change), and it doesn’t match what is in the book.

(d) Now suppose that exactly one edge of G has a negative length, and all other edges have non-
negative length, and there is no negative cycle in the graph. Suppose we run Dijkstra’s algo-
rithm starting from s. After it finishes, is it guaranteed that dist(t) will hold the length of the
shortest path from s to t? If yes, write “yes” and explain why. If no, write “no” and show a
small counterexample.

Solution: No.

s

b

a t
1

5

1

−100

Explanation: Dijkstra’s algorithm will visit the vertices in the order s,a, t,b. After it has visited
t, it has set d(s) = 0, d(a) = 1, d(b) = 5, d(t) = 2. When it visits b, it updates d(a) to −95,
which is lower than before—but having already visited a once, it does not schedule a to be re-
visited again. Consequently, Dijkstra’s algorithm outputs d(t) = 2, when the correct distance
is −94.

Comment: Be careful. Smaller graphs probably won’t form a valid counterexample. For
instance, Dijkstra’s algorithm does happen to compute the correct distances for the following
graph, even though it has a negative edge:

s

b

a1

5 −100

Dijkstra’s algorithm visits the vertices in the order s,a,b. After visiting a, the distances are
d(s) = 0, d(a) = 1, d(b) = 5. When visiting b, Dijkstra’s algorithm updates d(a) to −95, and
stops, so all vertices receive the correct distance for this graph. That said, this would be a valid
counterexample for a variant of Dijkstra’s algorithm that only considers edges (u,v) where
v /∈ R (i.e., when visiting u, we iterate over all edges (u,v) out of u, but skip over it if v has
been previously visited).

CS 170, Fall 2014, MT1 Soln 8

Problem 9. [All paths go through...] (8 points)
Google Maps wants to add a new feature: include a stop to Disneyworld in your route. In particular,
they are looking for an algorithm for the following problem:

Input: a directed graph G = (V,E), with a positive length `(e) on each edge e; vertices s,w, t

Output: the length of the shortest path from s to t that goes through w.

They propose the following algorithm:

1. Call Dijkstra(G, `,w), to get d(w,v) for each v ∈V .
2. Reverse the direction of all the edges; call the result Gr.
3. Call Dijkstra(Gr, `,w), to get d(v,w) for each v ∈V .
4. Return d(s,w)+d(w, t).

(a) Is their algorithm correct? If yes, write “yes” and explain why in a sentence or two. If no,
write “no” and show a small counterexample.

Solution: Yes, a shortest path from s to t going through w is the concatenation of a shortest
path from s to w and a shortest path from w to t.

Alternative solution: Yes, this is basically the same as HW6 Q4 (Road network design), but
here we have a single new road of length 0.

(b) What is the asymptotic running time of their algorithm? Use Θ(·) notation.

Solution: Θ((|V |+ |E|) lg |V |).

(c) Suppose G is a dag. Is Gr guaranteed to be a dag? Yes or no. Don’t justify your answer.

Solution: Yes.

Explanation: Any cycle in Gr would correspond to a cycle in G (just going in the opposite
direction). But G is a dag and does not have any cycles—so neither does Gr.

(d) Suppose G is a dag. If we replace both calls to Dijkstra’s algorithm with calls to the algorithm
for computing shortest paths in a dag, will the modified algorithm be correct? Yes or no. Don’t
justify your answer.

Solution: Yes.

(e) What is the asymptotic running time of the modified algorithm from part (d)? Use Θ(·) nota-
tion.

Solution: Θ(|V |+ |E|).

Problem 10. [Graph subsets] (7 8 points)
Let G = (V,E) be a connected, undirected graph, with edge weights w(e) on each edge e. Some
edge weights might be negative. We want to find a subset of edges E ′ ⊆ E such that G′ = (V,E ′)
is connected, and the sum of the weights of the edges in E ′ is as small as possible subject to the
requirement that G′ = (V,E ′) be connected.

CS 170, Fall 2014, MT1 Soln 9

(a) Is it guaranteed that the optimal solution E ′ to this problem will always form a tree? Write yes
or no. Don’t justify your answer.

Solution: No.

Explanation: The optimal solution for the graph shown in part (b) is to select all of the edges.
That has a cycle, so it isn’t a tree.

(b) Does Kruskal’s algorithm solve this problem? If yes, explain why in a sentence or two; if no,
give a small counterexample.

Solution: No.

a

bc

−1

−1

−1

(c) Describe an efficient algorithm for this problem. Be concise. You should be able to describe
your algorithm in one or two sentences. (You don’t need to prove your algorithm correct,
justify it, show pseudocode, or analyze its running time.)

Algorithm #1: Run Kruskal’s algorithm, then add all the negative edges.

Algorithm #2: Select all the negative edges (and call Union for each to form connected com-
ponents), then run Kruskal’s algorithm from there.

Either answer is valid.

Explanation: The optimal solution surely includes all negative edges (you can always add any
missing negative edge to any solution, and it will remain a valid solution). The negative edges
create a set of connected components. Any valid solution needs to connect all of them. If
you shrink each connected component to a single meta-node, then this is exactly the minimum
spanning tree problem, so Kruskal’s algorithm finds the cheapest way to connect them. This
proves that Algorithm #2 is correct.

We can prove that Algorithm 1 outputs the same set of edges as Algorithm 2, so it is correct,
too. In particular, if Algorithm 1 includes an edge e = (u,v) with non-negative weight, then
Algorithm 2 will include it too. If e = (u,v) is selected by Kruskal’s algorithm, then the set
of edges that are lighter than e must not be enough to connect u to v; but that set includes all
of the negative-weight edges, which are all considered before Kruskal’s algorithm considers
e, so u won’t be connected to v when e is considered in Algorithm 2, and thus Algorithm 2
will select e too. This means that the set of non-negative edges selected by Algorithm 1 is
a subset of the set of non-negative edges selected by Algorithm 2, so the total weight of the
solution produced by Algorithm 1 must be at most the total weight of the solution produced by
Algorithm 2. Since we know Algorithm 2 outputs an optimal solution, so too must Algorithm
1: in fact they select exactly the same set of edges.

You did not need to provide any of this explanation, just the algorithm.

CS 170, Fall 2014, MT1 Soln 10

Problem 11. [Graphs and Reductions] (6 8 points)
If S is a set of vertices in an undirected graph G= (V,E), define f (S) to be the length of the shortest
edge between a vertex in S and a vertex not in S, i.e.,

f (S) = min{`(v,w) : v ∈ S,w /∈ S,{v,w} ∈ E}.

We’d like an algorithm for the following problem, with running time O((|V |+ |E|) log |V |) or less:

Input: a connected, undirected graph G = (V,E), with a non-negative length `(e) on each edge e.

Output: a non-empty set S that makes f (S) as large as possible, subject to the requirement that
S 6=V .

We can solve this problem by making a small change to one of the graph algorithms we’ve seen in
this class. Which algorithm?

Solution: Kruskal’s algorithm. (Or: Prim’s algorithm.)

What’s the small change? Answer concisely (one sentence).

Solution: Stop it just before Kruskal’s algorithm selects the last edge; this partitions the graph into
two components, so let S be one of those components.

Alternative solution: Delete the last edge Kruskal’s selected, and let S be one of the two compo-
nents that remains.

Alternative solution: Run Prim’s algorithm to get a MST, then delete the largest edge in that tree,
dividing the graph into two components, and let S be one of those two components.

Explanation: Let M be a minimum spanning tree for G. Consider any cut (S,V − S). Since M
is a spanning tree, there is at least one edge from M that crosses the cut (S,V − S); let eS be the
shortest such, i.e., the shortest edge in M that crosses the cut (S,V −S). Then f (S) = `(eS). (Why?
Clearly f (S) ≤ `(eS). If f (S) < `(eS), then there is some other edge e′ that crosses the cut and is
shorter than e, but isn’t in M; but the cut property says this is impossible, as M− e+ e′ would be a
spanning tree whose total weight is even less than M.)

This means that if we want to maximize f (S), we need to choose a cut (S,V −S) that maximizes
`(eS). One way to do this is to pick the longest edge e in M, and use it to select a cut (S,V − S)
such that e is the only edge crossing this cut. This is exactly what the solutions above do.

You didn’t need to provide any explanation.

Comment: Running Prim’s algorithm and stopping it just before it selects the last edge does not
work. Prim’s algorithm does not necessarily select edges in order of increasing weight; the last
edge isn’t necessarily the heaviest edge in the MST.

Comment: This problem shows how to separate the vertices into two clusters that are “as far apart
from each other” as possible, for an appropriate definition of “far apart.” This algorithm is some-
times used in practice for clustering: we let `(u,v) be some measure of dissimilarity between items
u,v, form a graph, and run the algorithm above to separate the vertices into two well-separated
clusters.

CS 170, Fall 2014, MT1 Soln 11

Problem 12. [Algorithm design] (11 13 points)
We are given an array A[0..n− 1], where n > 1 and all array elements are non-negative integers.
Our goal is to find the maximum value of A[i]+A[j]2, where the indices i, j range over all values
such that 0≤ i < j < n.

Fill in the blanks below to produce an efficient algorithm that correctly solves this problem.

FindMax(A[0..n−1]):
1. If n≤ 1, return −∞.
2. Let k := bn/2c.
3. Set x := FindMax(A[0..k−1]).

4. Set y := FindMax(A[k..n−1]) .

5. Set z := max(A[0], . . . ,A[k−1])+ max(A[k]2, . . . ,A[n−1]2) .
6. Return max(x,y,z).

(a) Write a recurrence relation for the running time of your algorithm.

Solution: T (n) = 2T (n/2)+Θ(n).

(b) What is the asymptotic running time of your algorithm? Use Θ(·) notation. You don’t need to
justify your answer.

Solution: T (n) = Θ(n lgn).

(You do not need to prove your algorithm correct.)

(c) Describe a O(n) time algorithm for this problem. (No proof of correctness or justification of
running time needed.)

Algorithm #1:

Main idea: Modify FindMax to also return the maximum of all of the elements provided to it; then
step 5 can be implemented in Θ(1) time.

Pseudocode:

FindMax(A[0..n−1]):
1. If n≤ 0, return (−∞,−∞). If n = 1, return (−∞,A[0]).
2. Let k := bn/2c.
3. Set (x,m1) := FindMax(A[0..k−1]).
4. Set (y,m2) := FindMax(A[k..n−1]).
5. Set z := m1 +m2

2.
6. Return (max(x,y,z),max(m1,m2)).

Algorithm #2:

Main idea: Use a linear scan over j. For each j, compute M[j] = max(A[0], . . . ,A[j− 1]) (which
can be computed easily from M[j−1]). The answer is max{M[j]+A[j]2}.
Pseudocode:

CS 170, Fall 2014, MT1 Soln 12

FindMax(A[0..n−1]):
1. If n≤ 1, return −∞.
2. Set M[1] := A[0].
3. For j := 2,3, . . . ,n−1: set M[j] := max(M[j−1],A[j]).
4. Return max{M[j]+A[j]2 : 1≤ j < n}.

Algorithm #3:

Main idea: Greedily choose j that maximizes A[j]2 (resolving ties in favor of larger values of j),
then choose i to maximize A[i] subject to the requirement i < j.

Pseudocode:

FindMax(A[0..n−1]):
1. If n≤ 1, return −∞.
2. Set j := 1.
3. For k := 2,3, . . . ,n−1: If A[k]≥ A[j], set j := k.
4. Return max(A[0],A[1], . . . ,A[j−1])+A[j]2.

Explanation: The proof of correctness for Algorithm 3 is tricky. Clearly if all array elements are
zero, this algorithm is correct, so we can assume the maximum element of the array is at least
1. Let j0 be the value computed in lines 2–3 of this algorithm (i.e., it maximizes A[j0], resolving
ties in favor of larger indices), and i0 be the index of the largest of A[0],A[1], . . . ,A[j0−1]. Could
A[i]+A[j]2 be larger than A[i0]+A[j0]2? We argue next that it cannot. There are three cases:

• If j < j0, then A[i] ≤ A[i0] (since i < j < j0, so A[i] is one of A[0],A[1], . . . ,A[j0− 1], and
A[i0] is the maximum of those values). Also A[j] ≤ A[j0] (since A[j0] is the maximum), so
we find A[i]+A[j]2 ≤ A[i0]+A[j0]2.

• If j = j0, then A[i] ≤ A[i0] (since i < j = j0, so A[i] is one of A[0],A[1], . . . ,A[j0− 1]) and
A[j] = A[j0], so we find A[i]+A[j]2 ≤ A[i0]+A[j0]2.

• If j > j0, then A[i] ≤ A[j0] (since A[j0] is the maximum) and A[j] < A[j0] (since ties were
resolved by choosing the largest possible value of j0, so all of the elements A[j0 +1],A[j0 +
2], . . . ,A[n−1] are strictly smaller than A[j0]). In particular, A[j]≤ A[j0]−1 (since the array
elements are integers). Now when x ≥ 1, x+(x− 1)2 ≤ 0+ x2. Plugging in x = A[j0] and
using the facts inferred above, we find

A[i]+A[j]≤ A[j0]+ (A[j0]−1)2 ≤ x+(x−1)2 ≤ 0+ x2 ≤ A[i0]+A[j0]2.

In no case can A[i]+A[j]2 be larger than A[i0]+A[j0]2. Since i, j were arbitrary, this means that
A[i0] +A[j0]2 is indeed the maximum possible value for A[i] +A[j]2. Therefore Algorithm 3 is
correct.

You might notice that when greedily choosing j, it is essential to resolve ties in favor of larger
values of j. If we don’t, we might get the wrong answer: for instance, on array [0,2,1,2], the
optimal answer is 2+ 22, but if we resolve the tie by choosing j = 1, we produce a non-optimal
answer 0+22.

CS 170, Fall 2014, MT1 Soln 13

You might also notice that the proof of correctness breaks down when the array elements might
include negative numbers, or non-integers. That’s because Algorithm 3 isn’t correct for those kinds
of inputs. For instance, Algorithm 3 outputs the wrong answer on the array [−100,2,1]: it outputs
−100+22, but the correct answer is 2+12. As another example, Algorithm 3 outputs the wrong
answer on the array [0,2,1.9]: it outputs 0+ 22 = 4, but the correct answer is 2+ 1.92 = 5.61.
Therefore, the restriction to non-negative integers is critical to the correctness of Algorithm 3.

In contrast, Algorithms 1 and 2 do work correctly when the array elements are arbitrary real num-
bers. (If some array elements might be negative, Algorithm 1 needs a small tweak: each recursive
call should return not only the maximum of the elements provided to it, but also the maximum of
the square of the elements.)

Of course, you did not need to show any justification or explanation of why your algorithm is
correct.

We were strict about grading of 12(c). Your algorithm needed to be correct to get credit. We did
not give partial credit for algorithms that were less than fully correct. The two exceptions where
we gave partial credit were where your algorithm was correct apart from one of two specific minor
errors: failure to handle the special case where A[0] is the largest array element, or failure to handle
ties correctly. Answers with more serious problems—e.g., did not work correctly for some inputs,
did not run in O(n) time—generally received no credit.

If you are not sure what was wrong with your algorithm, I recommend that you implement it in
Python and implement a known-good algorithm (e.g., one of the algorithms above). Then, run it
on a million randomly generated test cases: generate random arrays of length 4 or 5, with each
element being a randomly chosen number from some range (say, 0..1000), and compare the output
of your algorithm to that of the known-good algorithm. If you think your algorithm is correct but
you received no credit, before filing a regrade request we encourage you to try this simple test to
confirm your impression.

A common error was to write an algorithm that does not respect the requirement that i < j. For
instance, one common approach was to let j be the index of the largest element in A and i be
the index of the second-largest element. This does not work, because it does not ensure that i < j.
Consider, for example, the input array [1,10,5]; this algorithm would output 5+102, but the correct
answer is 1+102. No credit was provided for this sort of answer.

CS 170, Fall 2014, MT1 Soln 14

