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The ITER device (R = 6.2 m, a = 2.0 m, Bφ = 5.3 T, q(0) = 1.0 ) is
assumed to operate with 40 MW of external heating and 80 MW of alpha-
particle heating. Assume that the plasma has a surface area at r = 0.9a of
612 m2. Assume that at r = 0.9a the safety factor q is 3.0 and that the ion
temperature is 3.0 keV. Assume that the density is 8 × 1019 at this point
and that the plasma is Z = 1 with a 50-50 D-T mixture. Assume that ten
percent of the heat leaves though the ion channel, neglecting ohmic heating.
Assume that both heating sources mentioned above deposit all of the heat
inside the r = 0.9a surface.

1. a.

At r = 0.9a, find τi, ωciτi, and κi
⊥ Also find the neoclassical collisionality

parameter ν∗

i .

Ti(0.9 a) = 3000 eV

ni(0.9 a) = 8.0 × 1019 m−3 = 8.0 × 1013 cm−3
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nτi =
2.09 · 107(mi/mp)1/2T 3/2

i

lnΛ
= 3.61 × 1011 cm−3s

τi = 0.0045 s

ωci =
qB

mi

=2.03 × 108s−1

ωciτi = 9.19 × 105

κi
⊥

= 2.0
nTiτi

mi(ωciτi)2
= 9.80 × 1016m−1 s−1

1. b.

For this value of ν∗

i , find the neoclassical collisionality regime; i. e. Pfirsch-
Schlüter, Plateau. or Banana.

ν∗ =
qR

vthτi

= (3)(6.2)(Ti/mi)
−1/2/τi = 0.0121 so ions are

Banana

1. c.

If the ion heat transport is neoclassical, find the value of ∇Ti at r = 0.9a.

q′′ = (40 + 80) × 106/612 = 19, 607.8 Watt m−2

Neoclassical Factor = Qneo = 2q2ϵ−3/2 = 109.545

Since q′′ = −Qneoκ⊥

dT (r)

dr
, we have

dT (r)

dr
= 1.8 × 10−15Jm−1 = 11.35 keV m−1

1. d.

At the center of the device, the electron temperature is 25.0 keV and the ions
are at 15.0 keV. The density there is 1.1 × 1020 m−3. Find the electron-ion
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interspecies heating at r = 0, in megawatts per cubic meter.

Qie =
3me

mi

n(Ti − Te)

τe

τe = 2.0 × 1010T 3/2

e /ne with Te in eV and MKS density. Then
τe = 718µs. and

Qie = 160 kW m−3

1. e.

Find the volumetric ohmic heating at r = 0. Give the answer in megawatts
per cubic meter. Hint: note that the toroidal current can be derived from q:

Jφ(0) =
2Bφ(0)

µ0q(0)R0

.

η = 2.8 · 10−8ZT −3/2

e

= 2.24 × 10−10 Ω m

Jφ(0) =
2 Bφ(0)

µ0q(0)R0

= 1.36 × 106 A m−2

PΩ = 414.6 W m−3
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A hohlraum design for NIF is made with depleted uranium (MU = 238mp).
The interior of the hohlraum is illuminated with frequency-tripled neodymium-
glass laser light, λ = 0.35 µ. There are two laser entrance holes (LEHs), each
with a 2.0 mm diameter. The total laser power is 4.0×1014 W with a duration
of 4 × 10−9 s.

2. a.

If the fraction of the power loss due to blackbody radiation through the LEHs
is thirty percent, find the photon temperature in the hohlraum.

Radiation loss:

q′′ = 0.3Plaser/Ahole =
0.3 × 4 × 1014

(

2 ·

(

πd2

4

)) = 1.91 × 1015 W cm−2

q′′

BB = σT 4

γ = 1.03 × 105T 4 = 1.9 × 1015 W cm−2. Then Tγ =
(

1.9 × 1015

1.03 × 105

)1/4

, or

Tγ = 369 eV

2. b.

Assume that the electron temperature at the hohlraum wall is 3.0 keV. As-
sume that the average charge < Z > of the uranium is 30 and that the
adiabatic index γe for the electrons is 1.0. Find the ion-acoustic wave speed
cs in the uranium plasma. Ignore the uranium ion temperature.

The ion-acoustic wave speed is given by:

cs =

(

γeZTe + γiTi

mi

)1/2

4



Using Z = 30 and m = 238mp = 2.38 × 1.67 × 10−27 with Te =
3000 × 1.6 × 10−19 gives

cs = 1.90 × 105 m s−1

2. c.

Draw a Stokes diagram for stimulated Brillouin scattering (SBS), labeling the
forward (1) and backscattered (2) electromagnetic wave and the ion acoustic
wave (3).

ω

k

12

3

1=Incoming EM wave
2=Backscattered EM wave
3=Forward Ion Acoustic wave

2. d.

For SBS taking place where the plasma density is at 0.8× the critical density,
find the value of the electron density there.

The critical density nc is defined as ωpe(nc) = ωL , or

nc =
meϵ0ω2

L

e2
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Here ωL =
2πc

λL
=

2π · 3 × 108

0.35 × 10−6
= 5.39 × 1015 s−1. Then

nc = 9.13 × 1027 m−3 and thus

n = 0.8nc = 7.31 × 1027 m−3

2. e.

Find the wavelength shift ∆λ for the backscattered electromagnetic wave by
the following method: to first order, the wavenumber k3 = 2k1. Then find
ω3 = k3cs and use this to obtain ω2 = ω1−ω3. Then solve for the (free-space)
wavelength shift using ∆λ/λ ≈ −∆ω/ω = −ω3/ω1. Express your answer in
angstroms. (1Å = 10−10 m.)

For the incoming EM wave

ω2

L = ω2

pe + k2

1
c2

Noting that ω2

pe/ω2 = n/nc and k0 = ω/c, this can be re-written
as

k1 = k0

√

1 − n/nc

and thus k =
√

1 − 0.8 ·
2πc

λ0

= 8.03× 106 m−1. Then ω3 ≈ 2k1cs =

3.056 × 1012 s−1. Then ∆ω/ωL = −5.675 × 10−4 and

∆λ = 3500 · 5.675 × 10−4 Å= 1.98 Å
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