
EECS 70 Discrete Mathematics and Probability Theory
Fall 2014 Anant Sahai Midterm 2

Exam location: 10 Evans, Last name starting with A-B or R-T

PRINT your student ID:

PRINT AND SIGN your name: ,
(last) (first) (signature)

PRINT your Unix account login: cs70-

PRINT your discussion section and GSI (the one you attend):

Name of the person to your left:

Name of the person to your right:

Name of the person in front of you:

Name of the person behind you:

Section 0: Pre-exam questions (3 points)
1. What is your favorite part of 70 so far? (1 pt)

2. Describe how you would feel in your dream stress-free vacation. (2 pts)

Do not turn this page until the proctor tells you to do so. You can work on Section 0 above before time starts.

EECS 70, Fall 2014, Midterm 2 1

PRINT your name and student ID:

Section 1: Straightforward questions (30 points)
Unless told otherwise, you must show work to get credit. You get one drop: do 5 out of the following 6
questions. (We will grade all 6 and keep only the best 5 scores) However, there will be essentially no partial
credit given in this section. Students who get all 6 questions correct will receive some bonus points.

3. Casting Out 9’s

Let a number N = a0 +a1 ∗10+a2 ∗102 + · · ·+ak ∗10k. Prove that N ≡ a0 +a1 +a2 + · · ·+ak (mod 9).

Since 10≡ 1 (mod 9), we can write

a0 +a1 ∗10+a2 ∗102 + · · ·+ak ∗10k(mod 9)

≡a0 +a1 ∗1+a2 ∗12 + · · ·+ak ∗1k(mod 9)

≡a0 +a1 +a2 + · · ·+ak(mod 9).

EECS 70, Fall 2014, Midterm 2 2

PRINT your name and student ID:

4. Interpolate!

Find the lowest-degree polynomial P(x) that passes through the points (1,4),(2,3),(5,0) in mod 7.

First, observe that we don’t need to compute ∆5(x), since it will be multiplied by 0 anyway.

∆1(x)≡
(x−2)(x−5)
(1−2)(1−5)

≡ x2−7x+10
4

≡ 2 · (x2 +3)≡ 2x2 +6 (mod 7)

∆2(x)≡
(x−1)(x−5)
(2−1)(2−5)

≡ x2−6x+5
−3

≡ 2 · (x2−6x+5)≡ 2x2 +2x+3 (mod 7)

P(x)≡ y1∆1(x)+ y2∆2(x)≡ 4 · (2x2 +6)+3 · (2x2 +2x+3)≡ 14x2 +6x+33≡ 6x+5 (mod 7).

Alternatively, you can graph the points in GF(7) and observe that they all lie on y = −x+ 5, which is
equivalent to 6x+5 mod 7.

EECS 70, Fall 2014, Midterm 2 3

5. RSA Compute

Cindy is sending a message to Tommy with RSA. If she uses the public key e = 3,N = 55, what is the value
of d that Tommy must use to decrypt the message?

We can easily figure out the primes p,q since N = 55 = 5×11.

[2mm] We want d = e−1 mod (p−1)(q−1), or d = 3−1 mod 40. Running the extended-gcd algorithm gives
us

1 = 40−3(13)

1 = 40(1)+(3)(−13)
(1)

and hence 3−1 ≡−13≡ 27 (mod 40). Now we have d = 27 .

Alternatively, you only need to test 3 numbers* that are 1 mod 40: 41, 81, 121. From here, we see that 81 is
divisible by 3, or that 27 is the number we are looking for.

[3mm]* Realize that the results repeat every 3×40, or that for example the result for 81 would be the same
as that for 201. For 81, we have ed = 81 = 1 mod 40, or d = 27. For 201, we have ed = 201 = 1 mod 40, or
d = 67 = 27 mod 40.

EECS 70, Fall 2014, Midterm 2 4

PRINT your name and student ID:

6. Packets

(a) You would like to send a message of length n packets to your friend. You know that at most k errors
can occur during transmission. However, you are guaranteed that the first n−1 packets you send will
arrive uncorrupted. How many packets must you send to guarantee successful transmission of your
entire message? Why?
n+2k packets.

We need to send n + 2k packets to protect against k general errors. If the first n− 1 packets are
guaranteed to be correct, the problem reduces to sending 1 packet with k possible general errors. Thus,
we need to send n−1+1+2k = n+2k total packets.

(b) You would like to send a message of length n over a channel. You know that at most k packets may
be dropped along the way, and of the packets that are not dropped, at most j may be corrupted. How
many packets should you send to guarantee successful decoding? Why? (No proof required)
n+ k+2 j packets.

Considering the worst case, where k packets are dropped and j packets are corrupted, we will need k
more packets to protect from the erasure errors, and then 2 j more packets to protect from the general
errors. Any other edge case must be upper bounded by this number (for example, if 0 packets dropped
and j packets corrupted, then we need n+2 j total packets).

EECS 70, Fall 2014, Midterm 2 5

PRINT your name and student ID:

7. This Looks Familiar

(a) Excited about his upcoming concert, Justin Bieber decides to toss a large number of fair coins to help
him calm his nerves. A trial consists of him flipping k such coins, and an experiment consists of 1000
such trials. He does 3 such experiments, with k being 10, 100, and 10000, respectively. (Justin Bieber
can count coins faster than mere mortals.) For each experiment, he plots a histogram of the number of
heads in each trial, using a horizontal axis scaled to include all the samples. Which histogram below
corresponds to which value of k?

(a) k=100 (b) k=10000 (c) k=10

(b) Justin Bieber now carries out 3 different experiments with k being 100, 1000, and 10000, respectively.
For each experiment, he plots a histogram of the fraction of heads, on a horizontal axis from 0 to 1.
Which histogram below corresponds to which value of k?

(d) k=10000 (e) k=100 (f) k=1000

EECS 70, Fall 2014, Midterm 2 6

PRINT your name and student ID:

8. Celebrate and Remember Textiles

Mathematics and computing both owe an immense debt to textiles, where many key ideas originated.

Instructions for knitting patterns will tell you to begin by “casting on” the needle some multiple of m plus
r, where m is the number of stitches to create one repetition of the pattern and r is the number of stitches
needed for the two edges of the piece. For example, in the simple rib stitch pattern below, the repeating
pattern is of length m = 4, and you need r = 2 stitches for the edges.

+ X X O O +

edge stitch edge stitch

Pattern of length 4

Thus, to make the final piece wider, you can add as many multiples of the pattern of length 4 as you like;
for example, if you want to repeat the pattern 3 times, you need to cast on a total of 3m+ r = 3(4)+2 = 14
stitches (shown below).

+ X X O O X X O O X X O O +

You’ve decided to knit a 70-themed baby blanket as a gift for your cousin and want to incorporate rows from
three different stitch patterns with the following requirements:

• Katie’s stitch: Multiple of 7, plus 4

• Anant’s lace: Multiple of 4, plus 2

• Gireeja’s grid: Multiple of 5, plus 2

You want to be able to switch between knitting these different patterns without changing the number of
stitches on the needle, so you must use a number of stitches that simultaneously meets the requirements of
all three patterns. Find the smallest number of stitches you need to cast on in order to incorporate all
three patterns in your baby blanket.

(HINT: There is a tool you learned in class that is perfect for this problem.)

[We know space is limited here, so feel free to use the next page as needed.]

Let x be the number of stitches we need to cast on. Using the Chinese Remainder Theorem, we can write
the following system of congruences:

x≡ 4 (mod 7)

x≡ 2 (mod 4)

x≡ 2 (mod 5).

EECS 70, Fall 2014, Midterm 2 7

We have M = 7 ·4 ·5= 140, r1 = 4, m1 = 7, b1 =M/m1 = 4 ·5= 20, r2 = 3, m2 = 4, b2 =M/m2 = 7 ·5= 35,
and r3 = 2, m3 = 5, b3 = M/m3 = 7 ·4 = 28. We need to solve for the multiplicative inverse of bi modulo
mi for i ∈ {1,2,3}:

b1a1 ≡ 1 (mod m1)

20a1 ≡ 1 (mod 7)

6a1 ≡ 1 (mod 7)

→ a1 = 6,

b2a2 ≡ 1 (mod m2)

35a2 ≡ 1 (mod 4)

3a2 ≡ 1 (mod 4)

→ a2 = 3,

and

b3a3 ≡ 1 (mod m3)

28a3 ≡ 1 (mod 5)

3a3 ≡ 1 (mod 5)

→ a3 = 2.

Therefore,

x≡ 6 ·20 ·4+2 ·35 ·3+2 ·28 ·2 (mod 140)

≡ 102 (mod 140),

so the smallest x that satisfies all three congruences is 102. Therefore we should cast on 102 stitches in order
to be able to knit all three patterns into the blanket.

EECS 70, Fall 2014, Midterm 2 8

PRINT your name and student ID:

[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem’s main
page.]

EECS 70, Fall 2014, Midterm 2 9

PRINT your name and student ID:

Section 2: True/False (30 points)
For the questions in this section, determine whether the statement is true or false. If true, prove the statement
is true. If false, demonstrate that it is false.

9. Prime or Composite

If positive integer m does not divide a and am−1 6≡ 1 mod m, then m is composite.

Mark one: TRUE or FALSE.

Proof by contraposition: Suppose that m is 1 or m is prime, we want to show that m|a or am−1 ≡ 1 mod m.

When m is 1, both 1|a and a1−1 ≡ 1 mod m hold.

When m is prime, if m|a, then we’re done. If m 6 |a, by Fermat’s Little Theorem, we know that am−1 ≡
1 mod m.

Since the contraposition is true, the original statement must also hold.

Proof by contradiction: Recall that a statement P⇒ Q is equivalent to ¬P∨Q. Example: “If you play
loud music, I’ll be angry.” Equivalently, you can say “Don’t play loud music, or I’ll be angry.” If you are
not convinced, draw out the Truth Table for the two statements.

The negation of P⇒Q is then logically equivalent to ¬(¬P∨Q) = P∧¬Q by De Morgan’s Laws. Suppose
that positive integer m does not divide a, am−1 6≡ 1 mod m, and m is not composite (i.e. m is 1 or m is prime).

If m 6 |a and m = 1, then a1−1 ≡ a0 ≡ 1 mod m. If m 6 |a and m is prime, by Fermat’s Little Theorem, we
know that am−1 ≡ 1 mod m. We also have am−1 6≡ 1 mod m, so this is a contradiction.

Hence, the supposition is incorrect, and the original statement must hold.

We decided not to take points off if your solution didn’t include the case m = 1.

EECS 70, Fall 2014, Midterm 2 10

PRINT your name and student ID:

10. Remainder Riddles

There exists a polynomial (over GF(7)) p(x) that has a remainder of 3 when divided by x−1, a remainder
of 1 when divided by x+1, and a remainder of 2x+1 when divided by x2−1.

Mark one: TRUE or FALSE .

Solution 1: Proof by contradiction. Assume that

p(x) = q(x)(x−1)+3,

p(x) = h(x)(x+1)+1, and

p(x) = g(x)(x2−1)+2x+1 = g(x)(x−1)(x+1)+2x+1.

for some polynomials q(x), h(x), and g(x). Then plugging in x = 1 to the first equation, p(1) = 3 and plug-
ging in x = −1 to the second equation, p(−1) = 1. From the third equation, if we plug in x = 1 we get
p(1) = 3, and if we plug in x = −1, we get p(−1) = −1. But this contradicts that p(−1) = 1, since this
would mean that p(x) is not a polynomial function. Therefore the statement is false.

Solution 2: From the problem, we have

p(x) = q(x)(x−1)+3 and

p(x) = h(x)(x+1)+1

for some polynomials q(x) and h(x), so we know p(1) = 3 and p(−1) = 1. We want to find r(x) where

p(x) = g(x)(x2−1)+ r(x) = g(x)(x−1)(x+1)+ r(x)

for some polynomial g(x). We know that the degree of r(x) is necessarily less than the degree of x2−1, so
the degree of r(x) is at most 1. Therefore we can write r(x) = ax+b and solve for a and b. We can write the
equations

p(1) = r(1) = a+b = 3 and p(−1) = r(−1) = b−a = 1.

We can solve this by a simple substitution. From the second equation we can write b= 1+a, and substituting
into the first, 2a+ 1 = 3, so a = 1. Then substituting back into the second equation, b− 1 = 1, so b = 2.
Therefore the remainder must be r(x) = x+2 6= 2x+1. Therefore the statement is false.

Common mistakes: Many students answered that the statement was false because x2−1 is not coprime to
x+1 and x−1, and therefore the Chinese Remainder Theorem can not be used. It is true that the Chinese
Remainder Theorem can not be used on the three equations as stated in the problem, but as shown in Solution
2 above, this does not prevent us from determining the remainder of p(x) divided by x2−1. Another common
mistake was stating that the statement was false based on some reasoning that the remainder of p(x) divided
by x2−1 could not be of degree 1. Again, as shown in Solution 2 above, the remainder is indeed of degree
1, so this is not a valid line of reasoning.

EECS 70, Fall 2014, Midterm 2 11

PRINT your name and student ID:

[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem’s main
page.]

EECS 70, Fall 2014, Midterm 2 12

PRINT your name and student ID:

Section 3: Free-form Problems (65 points)
11. Secret Sharing with Spies (20 points)

An officer stored an important letter in her safe. In case she is killed in battle, she decides to share the
password (which is a number) with her troops. However, everyone knows that there are 3 spies among the
troops, but no one knows who they are except for the three spies themselves. The 3 spies can coordinate
with each other and they will either lie and make people not able to open the safe, or will open the safe
themselves if they can. Therefore, the officer would like a scheme to share the password that satisfies the
following conditions:

• When M of them get together, they are guaranteed to be able to open the safe even if they have spies
among them.

• The 3 spies must not be able to open the safe all by themselves.

Please help the officer to design a scheme to share her password. What is the scheme? What is the smallest
M? Show your work and argue why your scheme works and any smaller M couldn’t work.

The key insight is to realize that both polynomial-based secret-sharing and polynomial-based error correc-
tion work on the basis of evaluating an underlying polynomial at many points and then trying to recover that
polynomial. Hence they can be easily combined.

Suppose the password is s. The officer can construct a polynomial P(x) such that s = P(0) and share (i,P(i))
to the i-th person in her troops. Then the problem is: what should the degree of P(x) be and what is the
smallest M?

First, the degree of polynomial d should not be less than 3. It is because when d < 3, the 3 spies can decide
the polynomial P(x) uniquely. Thus, n will be at least 4 symbols.

Let’s choose a polynomial P(x) of degree 3 such that s = P(0). We now view the 3 spies as 3 general errors.
Then the smallest M = 10 since n is at least 4 symbols and we have k = 3 general errors, leading us to a
“codeword” of 4+ 2 ∗ 3 = 10 symbols (or people in our case). Even though the 3 spies are among the 10
people and try to lie on their numbers, the 10 people can still be able to correct the k = 3 general errors by
the Berlekamp-Welch algorithm and find the correct P(x).

Alternative solution:
Another valid approach is making P(x) of degree M− 1 and adding 6 public points to deal with 3 general
errors from the spies. In other words, in addition to their own point (i,P(i)), everyone also knows the values
of 6 more points, (t +1,P(t +1)),(t +2,P(t +2)), . . . ,(t +6,P(t +6)), where t is the number of the troops.
The spies have access to total of 3+6 = 9 points so the degree M−1 must be at least 9 to prevent the spies
from opening the safe by themselves. Therefore, the minimum M is 10.

EECS 70, Fall 2014, Midterm 2 13

PRINT your name and student ID:

[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem’s main
page.]

EECS 70, Fall 2014, Midterm 2 14

PRINT your name and student ID:

12. T/F: A Different Code (25 points)

An n-character message ~a = (a0, . . . ,an−1), with ai ∈ GF(p), is encoded into a polynomial of degree-d as
follows. P~a(x) = a0xd +a1xd−1 + · · ·+an−1xd−n+1. A codeword of length n+2k is generated by evaluating
P~a(x) as follows. ~c(~a) = (P~a(1),P~a(2), . . . ,P~a(n+ 2k)). If p > d > n+ 2k and k > 0, then this code has a
minimum Hamming distance of 2k+1.

(Recall that the Hamming distance between two codewords is the number of positions they are different.
The minimum distance of a code is the minimum distance between two distinct codewords.)

Mark one: TRUE or FALSE.

If true, prove the statement is true. If false, demonstrate that it is false.
The statement is T RUE .
We will reduce the problem into coefficient encoding for Reed-Solomon code. We observe that the differ-
ence between this problem and the RS code is that everything is multiplied by xd−n+1. That is,

P~a(x) = a0xd +a1xd−1 + · · ·+an−1xd−n+1

= (a0xn−1 +a1xn−2 + · · ·+an−1)xd−n+1.

We are working over a finite field GF(p), and the encoding does not use x = 0, so a unique multiplicative
inverse must exist for x = 1,2, . . . ,n+2k. Thus, at the received end, we can multiply each received position
by the appropriate number to the order of (−d +n−1). Therefore the codeword:

~c′(~a) = [P~a(1)∗1(−d+n−1),P~a ∗ (2)2(−d+n−1), . . . ,P~a(n+2k)∗ (n+2k)(−d+n−1)]

is the codeword of (an−1, . . . ,a0) encoded using coefficient-encoding for RS code. Therefore, two codewords
of the proposed encoding will differ in a position if and only if their corresponding RS codewords differ in
exactly that position. Or in other words, if u,v are two codewords at position x, u= v if and only if xku= xkv.
Thus, the Hamming distance is preserved when transforming the RS code to the proposed code.

We have proved that interpolation-encoding has distance 2k+1 in the lecture note. The set of polynomials
obtained by coefficient encoding and the set of polynomials obtained by interpolation-encoding is the same
set of polynomials — namely *all* polynomials of degree n− 1. Since the set of codewords depend only
on the set of polynomials, these two sets are identical. So, their distance properties are identical. Therefore,
the minimum distance of coefficient-encoding is 2k+1, so dmin in this problem is also 2k+1.

EECS 70, Fall 2014, Midterm 2 15

PRINT your name and student ID:

[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem’s main
page.]

EECS 70, Fall 2014, Midterm 2 16

PRINT your name and student ID:

13. Like RSA (20 points)

You want to come up with an RSA-like scheme with N = pqrs, where p,q,r,s are distinct primes and the
public encrypting function is xe mod N.

(a) (5 points) Specify how to choose e.
We need to choose an e which is relatively prime to (p−1)(q−1)(r−1)(s−1). In addition, e cannot
be 1, although this did not need to be specified. An explanation why is not necessary, but the reason is
that it requires an a multiplicative inverse in that mod.

(b) (15 points) Use the Chinese Remainder Theorem to come up with a decryption procedure that works
slightly faster than the usual RSA decryption. Show that your scheme works (i.e. you can recover
encrypted messages by decrypting them.).
You can assume here that exponentiating smaller numbers to smaller powers mod smaller numbers is
significantly faster. So (ab)cd mod e f is slower than calculating both ac mod e and bd mod f .
(HINT: Your secret key should include p,q,r,s individually.)
A key sentence in this problem was this: "exponentiating smaller numbers to smaller powers mod
smaller numbers is significantly faster", which did not say that when only two of the three numbers
are smaller, exponentiation would still be faster. As such, full points was only granted to solutions that
decreased all three numbers.
First, similarly to the regular RSA algorithm, a decryption key must be chosen. However, instead of
calculating d = e−1 (mod (p−1)(q−1)(r−1)(s−1)), we calculate separate decryption keys:

dp ≡ e−1 (mod p−1)

dq ≡ e−1 (mod q−1)

dr ≡ e−1 (mod r−1)

ds ≡ e−1 (mod s−1)

For our private key, we thus store (dp,dq,dr,ds, p,q,r,s). Once a message y is received, we first reduce

EECS 70, Fall 2014, Midterm 2 17

it:

yp := y (mod p)

yq := y (mod q)

yr := y (mod r)

ys := y (mod s).

Now, to decrypt, we calculate separately using the repeated-squaring mod-exp algorithm (Note 5):

xp ≡ ydp
p (mod p)

xq ≡ ydq
q (mod q)

xr ≡ ydr
r (mod r)

xs ≡ yds
s (mod s).

Note that this exponentiation step involves all of smaller bases, smaller exponents, and smaller mods,
than calculating ye−1 mod (p−1)(q−1)(r−1)(s−1) (mod pqrs). Finally, we use CRT to combine and get the
original decrypted message:

x≡ xp (mod p)

x≡ xq (mod q)

x≡ xr (mod r)

x≡ xs (mod s).

Now, we must justify why x is the original message sent. First, we will examine why xp = x (mod p).
There are two possible cases: either x = 0 (mod p), or x 6= 0 (mod p). In the first case, we have

xp = ydp ≡ (xe)dp ≡ (0e)dp = 0 = x (mod p)

In the second case, we know that xp−1 ≡ 1 (mod p) by FLT, and that e ∗ dp = 1 (mod p− 1) so
e∗dp = kp ∗ (p−1)+1 for some integer k, so

xp = ydp ≡ (xe)dp = xe∗dp ≡ xkp∗(p−1)+1 = x∗ (xp−1)
k ≡ x∗1k = x (mod p)

Thus, we know that in both cases, xp ≡ x (mod p). From symmetry, we know that the other three
equations also hold, and, since p, q, r, and s are coprime, we can thus CRT to calculate x (mod pqrs).

EECS 70, Fall 2014, Midterm 2 18

PRINT your name and student ID:

[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem’s main
page.]

EECS 70, Fall 2014, Midterm 2 19

PRINT your name and student ID:

14. (optional) Oblivious Updates: File Sync (30 points)

Alice and Bob start with identical versions of a file. Assume the original file is n symbols from GF(p),
denoted ~m. Assume that 2n < p . Throughout this problem, Alice can send messages (noiselessly) to Bob,
but Bob cannot send anything to Alice.

(a) (5 points) Suppose that one of the symbols in Bob’s file gets erased. Bob knows which position was
erased, but not what it was before it was erased. Alice only knows that one symbol was erased but not
which one.
Alice would like to send Bob a short message, such that he can recover the original file ~m. But noiseless
communication is expensive – can you devise a scheme for Alice to do this, better than re-sending her
n-long entire file ~m? Argue why this works.
Let mi ∈ GF(p) be the ith symbol of Alice’s file. Say the jth symbol in Bob’s file was erased.
Method 1:
Alice sends the single symbol s=∑i mi to Bob. From his intact symbols, Bob can compute s′=∑i6= j mi,
and can subtract to recover m j = s− s′.
Method 2:
Let S = {0,1, . . . ,(n− 1)} (the "evaluation set"). Alice constructs a (n− 1)-degree polynomial P(x),
such that P(i) = mi for all i ∈ S. She then sends the single symbol P(n) to Bob. Using his intact
symbols, Bob has access to the n− 1 points P(i) = mi for i ∈ S, i 6= j. Combining this with the
received symbol P(n), Bob has access to n evaluations of P(x), which he can interpolate to find the full
polynomial P(x).
He then evaluates P(j) to recover the symbol.

Remarks: In general, both solution methods took advantage of the "shared information" between Alice
and Bob to reduce the communication required. Notice that for Method 2, it was crucial that the
polynomial was constructed by interpolation encoding, not coefficient encoding (coefficient encoding
can be made to work, but would require a modification of Berlekamp-Welch). This allowed Bob to use
his intact data to reconstruct the polynomial.
Full credit was given for correct schemes that were communication-optimal (1-symbol). Many students
used some version of Method 1. (We gave credit for sending the "XOR" of all symbols, even though
strictly speaking we are not working in a power-of-two field, so converting to binary representation
may be slightly suboptimal).
Varying amounts of partial credit was awarded for reasonable but suboptimal (or only partially correct)
solutions. For example, sending the product of all symbols instead of the sum (in Method 1) would
fail if any symbol is zero (ie, almost always).
Surprisingly many students constructed a polynomial from Alice’s data, then tried to "send the polyno-
mial" to Bob – claiming that this requires less communication than sending the underlying data. This
is incorrect, and received no credit.

EECS 70, Fall 2014, Midterm 2 20

PRINT your name and student ID:

(b) (15 points) Assume that Bob has a correct version of ~m. Alice makes a small change to her copy of the
file, modifying one of the n symbols. Let this updated file be ~m′. Bob later wants to update his copy to
match Alice’s copy – but Alice has forgotten which symbol she changed!
Once again, Alice would like to send Bob a short message, such that he can recover the updated file
~m′. But noiseless communication is expensive – can you devise a scheme for Alice to do this, better
than re-sending her n-long entire file ~m′? Argue why your scheme works.
Method 1:
(Using the notation of the previous part.) Let Alice construct P(x) as in the previous part (Method 2),
such that P(i) = m′i for i ∈ {0,1, . . .(n−1)}. She then sends the two symbols P(n),P(n+1) to Bob.
Since m′i = mi for all i 6= j, Bob can use his symbols (mi) to find n evaluations of P: P(i) = m′i, with at
most one error (at i = j). Together with the two received symbols, Bob has access to n+2 evaluations
of the (n−1)-degree polynomial P(x), with at most one error.
This is exactly equivalent to an interpolation-encoded Reed-Solomon code, with at most k = 1 general
error. Thus Bob can use a Berlekamp-Welch decoder to find P(x), and correct his file.
Method 2:
Alice sends the two symbols s′1 = ∑i m′i and s′2 = ∑i im′i (that is, treating the index i∈ {0,1, . . . ,(n−1)}
as a symbol in GF(p)). Bob similarly computes s1 = ∑i mi and s2 = ∑i imi from his file, and subtracts
to find ∆ = s′1− s1 = m′j−m j and K = jm′j− jm j. Then, if ∆ = 0 he knows there is no change in the
file. Otherwise, he computes K∆−1 to find j, the changed position. He can then add ∆ to his symbol
m j, to correct his file.

Remarks: The above solutions are actually similar, but Method 1 is simpler to generalize. Again, we
exploited the shared information to reduce communication. In fact, it can be shown that no scheme for
this problem can achieve better than 2 symbols of communication.
Full credit was awarded only for entirely correct schemes, with proper justification. Notice that Method
1 relies crucially on using the interpolation encoding, so Bob can use his file as "faulty evaluations"
of Alice’s polynomial. Simply saying "Alice constructs a polynomial from her file" (or similar) was
insufficient, since the scheme intimately depends on the details of the construction. Varying amounts
of partial credit was awarded for entirely correct but suboptimal solutions. No credit was awarded for
incorrect solutions.
Many students also required Alice to send the x-coordinates of her evaluations (ie, packets of the form
(n,P(n))). This is not required, as they can agree on the evaluation set beforehand (as is normally done
when using Reed-Solomon codes).

EECS 70, Fall 2014, Midterm 2 21

PRINT your name and student ID:

(c) (10 points) What if Alice changes z > 1 symbols? How would you deal with this case? (The size of
the message sent to Bob is allowed to depend on z.) Argue why this works.
Use the natural generalization of Method 1 from the previous part. Alice constructs the polynomial
P(x) as before, and sends the 2z symbols P(n),P(n+ 1), . . . ,P(n+ 2z− 1). Using his file and the
received symbols, Bob has access to n+2z evaluations of P(x), with at most z errors. Thus he can use
Berlekamp-Welch as before, to correct his file.
There is a minor issue here... if n < 2z, then Alice is better off just sending her entire file!

Remarks: Most students who correctly argued Method 1 on the previous part got this part. We awarded
partial credit for promising extensions of part (b), even if part (b) was not presented/argued properly.
Only a few students caught the "minor issue", but we only subtracted a minor amount of points for the
oversight.

EECS 70, Fall 2014, Midterm 2 22

PRINT your name and student ID:

[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem’s main
page.]

EECS 70, Fall 2014, Midterm 2 23

PRINT your name and student ID:

[Doodle page! Draw us something if you want or give us suggestions or complaints. You can also use this
page to report anything suspicious that you might have noticed.]

EECS 70, Fall 2014, Midterm 2 24

