UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

EE 105: Microelectronic Devices and Circuits

MIDTERM EXAMINATION #1

Time allotted: 80 minutes

First

STUDENT ID#:

INSTRUCTIONS:

1. Use the values of physical constants provided below.

2. SHOW YOUR WORK. (Make your methods clear to the grader!)

3. Clearly mark (underline or box) your answers.

4. Specify the units on answers whenever appropriate.

PHYSICAL CONSTANTS			PROPERTIES OF SILICON AT 300K		
Description Electronic charge Boltzmann's constant Thermal voltage at 300K Note that V _T ln(1	- 1	$\frac{\text{Value}}{1.6 \times 10^{-19} \text{ C}}$ 8.62×10 ⁻⁵ eV/K 0.026 V at T=300K	Description Band gap energy Intrinsic carrier concentration Dielectric permittivity	$\frac{\text{Symbol}}{E_{\text{G}}}$ n_{i} ε_{Si}	$\frac{\text{Value}}{1.12 \text{ eV}}$ 10^{10} cm^{-3} $1.0 \times 10^{-12} \text{ F/cm}$

Spring 2008

Signature

<u>Problem 1</u> [25 points]: Semiconductor Basics a) A Si resistor is doped with 10^{17} cm⁻³ of phosphorus and $2x10^{17}$ cm⁻³ of boron impurities. i) What are the electron and hole concentrations, *n* and *p*, in this sample at room temperature? [4 pts]

ii) Estimate the resistivity of this sample. [5 pts]

iii) Qualitatively (no calculations required), how would the resistivity change when the temperature goes up to 100°C? Explain briefly. [4 pts]

b) Consider the two Si p-n junction diode below:

N _a =10 ¹⁶ cm ⁻³	N _d =10 ¹⁸ cm ⁻³	
---	---	--

N _a =10 ¹⁶ cm ⁻³	N _d =10 ¹⁶ cm ⁻³
---	---

PN Junction APN Junction Bi) Find the ratio of the built-in voltages for these two p-n junctions. [4 pts]

ii) What is the ratio of the current densities under a forward bias voltage of 1V for these two diodes? [4 pts]

iii) Find the ratio of the areal junction capacitances of these two p-n junctions when they are not biased (i.e., 0V). **[4 pts]**

Problem 2 [25 points]: Bipolar Junction Transistor (BJT)

a) The following two NPN BJTs have the same doping concentrations. The only difference is their base widths: BJT-A has a base width of 100 nm, while BJT-B has a base width of 200 nm. Find the ratio of their current gains. (If you give correct *qualitative* answer, i.e., which BJT has higher current gain and why, you will get half credit). **[6 pts]**

b) Consider the following two BJTs. They have identical dimensions and doping profiles, except BJT-A is NPN transistor and BJT-B is PNP transistor. Find the ratio of their current gains. (If you give correct *qualitative* answer, i.e., which BJT has higher current gain and why, you will get half credit). **[6 pts]**

c) Answer this question *qualitatively*. For the two BJTs in Part a), which BJT will have larger Early voltage? Why? [4 pts]

e) Draw the small-signal model of the circuit in Part d). Specify all the small signal parameters used (e.g., g_m , r_π , etc). [4 pts]

Problem 3 [30 points]: BJT Amplifiers

a) Consider the BJT amplifier shown below with $I_{BIAS} = 1 \text{ mA}$.

i) Find the value of V_{BE} . [4 pts]

ii) Is the BJT in the active mode? Why? [4 pts]

iii) Find the small signal parameters of the BJT under this bias condition. [4 pts]

iv) What is the expression for the voltage gain? What is its numerical value? [6 pts]

v) What is the expression for the input impedance (seen by v_{in})? What is its numerical value? **[6 pts]**

vi) What is the expression for the output impedance (seen by v_{out})? What is its numerical value? [6 pts]