

University of California, Berkeley – College of Engineering

Department of Electrical Engineering and Computer Sciences
Fall 2011 Instructor: Dan Garcia 2011-12-13

Last Name ANSWERS

First Name

Student ID Number

cs10- Login First Letter a b c d e f g h i j k l m

cs10- Login Last Letter a b c d e f g h i j k l m
n o p q r s t u v w x y z

The name of your LAB TA (please circle) Aijia Glenn Luke Navin Rabbit Samir

Name of the person to your Left

Name of the person to your Right

All my work is my own. I had no prior knowledge of the exam
contents nor will I share the contents with others in CS10 who have not

taken it yet. (please sign)

Instructions
● Don’t Panic!
● This booklet contains 6 pages including this cover page. Put all answers on these pages; don’t hand in

any stray pieces of paper.
● Please turn off all pagers, cell phones and beepers. Remove all hats and headphones.
● You have 170 minutes to complete this exam. The final is closed book, no computers, no PDAs, no cell

phones, no calculators, but you are allowed three double-sided sets of notes. There may be partial
credit for incomplete answers; write as much of the solution as you can. When we provide a blank,
please fit your answer within the space provided.

Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Online Total

Points 2 2 2 2 2 2 2 2 2 2 2 10 10 10 10 15 80

Score

Short-answer Questions (2 pts each, we drop lowest score)

Question 1: Briefly name one practical application for IBM’s Watson technology. (aside from mobile phones)

Question-answering seemed to be a good fit. In the last decade, question-
answering systems have become increasingly important for firms dealing with
mountains of documents. Legal firms, for example, need to quickly sift through
case law to find a useful precedent or citation; help-desk workers often have to
negotiate enormous databases of product information to find an answer for an
agitated customer on the line.
Question 2: Argue both perspectives of the game theory debate using only one sentence each.
A weak solve is better than a strong solve because… A strong solve is better than a weak solve because…

If all you care about is the theoretic
value, it’s much faster

You know the value of EVERY position, so
your AI can be perfect, and/or you can
kibbitz/comment on human-human play.

Question 3: What are the ugly, difficult details of programing a hundred-thousand-node compute cluster that
the elegant MapReduce abstraction hides from the user?

Handling machine failures, load balancing, dispatching and collecting

Question 4: “Cloud computing is great, but it’ll never work with Big Data, since the cost and/or time of
transporting large datasets to/from the cloud is too great.” Circle True or False and explain in one sentence.

False – you can either fedex hard disks or use their “pay as you go” fast network

Question 5: How is Pandora™ able to satisfy the demand of its 100+ Million users with so few media servers?

Three ideas: (1) only 1/10th are active daily (2) Data locality i.e., a small
number of songs are played a large number of times, and (3) the data requirements
are actually quite small since it’s streaming (128 Kib/s) not storage.

Question 6: What’s the hardest thing Twitter has to do (from an engineering point of view)?

Make it all work (i.e., tweets from all senders to all receivers) in seconds.

Question 7: Prof Yelick said computing is addressing two global challenges. One was “our changing world:
understanding climate change, alternative energy sources, mitigation techniques, etc.” What was the other?

Health and medicine – understanding the human body, development of treatments,
and disease prevention

Question 8: You need to find an efficient polynomial-time algorithm (exact) solution to a tough problem, but
you’re not succeeding. However, you do prove your problem is NP-complete. How does that help?

You have proved that your problem is just as hard as many, many other problems
which have no poly-time solution yet AND if anyone solves any of those, you get
yours solved too!

Question 9: How could quantum computers help with the subset problem? That’s 2n combinations to test!
Quantum computers can solve the problem in 2n/2 time, a huge difference!

It marked the first time courts said people were responsible where their bits
went (in this case, out of state to a location with a different obscenity
standard)
Question 10: In 1994, a couple in Milipitas (in CA near here!) were convicted because their bulletin board,
dubbed “The Nastiest Place on Earth”, contained obscene material. Why was this an important ruling?

Login: cs10-____

Question 11: Eating my Halloween candy well beyond Thanksgiving… (6 pts)
Your mom asks you the difference between an iterative and recursive solution to a problem. You
decide to explain it to her by showing how you would program a robot to eat a bag of M&Ms iteratively
and recursively. Assume the robot knows how to “eat one M&M” and check if “Bag is Empty”

Eat M&Ms Iteratively:

 Repeat until <Bag is Empty>:
 Eat one M&M

Eat M&Ms Recursively:

 If not <Bag is Empty>:
 Eat one M&M
 Eat M&Ms Recursively

Question 12: Magical Mystery Tour (11 pts)

a) Below each script, write ALL the possible values of list after each script is run.

(A B) (A B) (B A) (A A) (B B)

 Quadratic
b) Assuming swap and pick-random are constant-time operations,

length-of(list) is a linear-time operation, what is the running time of mystery? ________________
 “unsorts” the list – shuffles the elements randomly
c) What does mystery do? ___

d) Assuming you didn’t know how mystery was written, but were just given the spec from your answer to (c),

how would you test mystery really, really, really thoroughly? (this is called black-box testing)
Make a list of n items (say n=5), then run the code 100*n! times and
see if all n! permutations are evenly distributed

Dan Garcia

Question 13: Strawberry Fields Forever (revisited)... (10 pts)
This was the question from the midterm:

Strawberry plants are funny. Every year they send “runners” to their left and right neighbors, which take seed and
become an entirely new strawberry plant the next year. We’d like to model this process and count how many strawberry
plants we’ll have in our garden (that we’ve divided into columns, like the number line) starting from a single strawberry
plant in column 0 in year 1, the top row. All other numbers in the top row are 0 (no other strawberry plants). The number
in every subsequent row is the sum of the three numbers directly above it, to the above left and to the above right as
shown below. We’ve filled in the table for years 1 through 5:

You are to write a function Plants that takes two integer arguments, a column and a (positive integer) year, and returns
the number of plants that will be in that column on that year.

Since you’re now an experienced computer scientist, you know that we try to abstract, and generalize our
solutions. In the problem statement notice we hard-coded the ways the runners move. What if every year they
send their runners to the left only? What if strawberry plants die every year and only the runners survive? To
generalize this, we define two lists COLUMNS and YEARS that encode how the contributing cells in the table
above sum to a specific (column, year) value. For example, in the midterm problem, we would have
defined COLUMNS as (-1 0 1) and YEARS as (-1 -1 -1), which is why the recursive case was the sum:

plants(column-1,year-1) + plants(column+0,year-1) + plants(column+1,year-1)

a) Edit the recursive case in the Plants function to handle this more generalized approach. We’ve filled in

the base case with the answers from the midterm solutions. (COLUMNS and YEARS are always equal size.)

Plants(column, year)
 if ((column = 0) and (year = 1))
 report (1)
 if (year = 1)
 report (0)
 combine-with[+]items-of(map[Plants(column+(),year+()]over(COLUMNS)(YEARS))
 report (__

 __)

b) If YEARS is only a list of (at least one) -1s, what is the running time of Plants?

(it could be a function of column, year, COLUMNS or YEARS)
Zeros everywhere, but the central column is the Fibonacci series
If len(COLUMNS)=1, linear. OW exponential.
c) If we replaced both “year = 1” checks with “year < 3” in the base cases above, and then defined

COLUMNS as (0 0) and YEARS as (-1 -2), describe the table that results (hint: you’ve seen it before).

 C O L U M N
 … -4 -3 -2 -1 0 1 2 3 4 …
 1 … 0 0 0 0 1 0 0 0 0 …
Y 2 … 0 0 0 1 1 1 0 0 0 …
E 3 … 0 0 1 2 3 2 1 0 0 …
A 4 … 0 1 3 6 7 6 3 1 0 …
R 5 … 1 4 10 16 19 16 10 4 1 …
            

Login: cs10-____

Question 14: Give me some love! XOXO... (10 pts)
You decide to write love, a function to chart how affectionate you are (i.e., what you do) with your sweetie over
the course of a given day (day 1 is your first day together, day 2 is your second, etc.). It returns a (possibly
long) sentence whose elements are only: hugs (o), kisses (x), and just hanging out (-). We provide a helper
block reverse-words, that does what you’d imagine: reverse-words("CS10 is fun")  "fun is CS10"

a) What will you do on day 3? I.e., what will return? If it is an error, say what the error is. If it is an
infinite loop, write “it never returns”.

 x - - - o

b) What will you do on day 4? I.e., what will return? If it is an error, say what the error is. If it is an
infinite loop, write “it never returns”.

 x x - - - o - - o

c) Now let’s do some analysis of your long-term relationship. What are the first three and last three things you

do on day 9999? That is, what are the first three and last three letters of ? Fill in the blanks.

 x x x x x o
 ________ ________ ________ . . . ________ ________ ________

d) love can return a long and seemingly random sequence of xs, os & -s. For each of the following activities,

circle either POSSIBLE or IMPOSSIBLE if it’s ever possible to do these things someday. The first one is
already done for you.

• POSSIBLE IMPOSSIBLE : "- - -" (Hang out three times in a row)

• POSSIBLE IMPOSSIBLE : "- - - -" (Hang out four times in a row)

 ^^^^^^^^^^^^^
• POSSIBLE IMPOSSIBLE : "o x" (Hug immediately followed by a kiss)

 ^^^^^^^^^
• POSSIBLE IMPOSSIBLE : "o o" (Hug twice in a row)
 ^^^^^^^^^^^^

Question 15: A sorted Quest-ion (10 pts)

Recall that our map function usually takes a function (of one argument) and one list, and applies the
function to every element of the list, returning a list of the same size. It can also take many lists, and in
this case the function must take the number of arguments equal to the number of lists, all the same size.
The elements of the lists are one-by-one passed as arguments to the function. E.g.,

a) Write the following new block (a “cousin” of map) that takes a function (of two arguments) and a list (of

at least two items) and applies the function to every set of two neighbors, returning a list one element
smaller than the input. You may not use explicit recursion or iteration, and you may find the list
manipulation helper functions (listed below) helpful. Here is an example call:

map(function)over-neighbors-in(list)

 map(function)over(all-but-last-of(list) all-but-first-of(list))
 report(___)

b) Now, using this function you’ve written in (a), write Sorted?(list) that returns when the input list

is sorted in ascending order (i.e., every element is smaller than the ones after it, like the list (3 6 7).
Again, you may not use explicit recursion or iteration.

Sorted?(list)

 Combine-with[and]items-of(map[<]over-neighbors-in(list))
 report(___)

List manipulation helper functions
Name Description Example

item(num)of(list) Returns item at list index num item(3)of((cs10 is fun))  fun
all-but-first-of(list) Returns a new list with the

last element removed.
Doesn’t change the original.

all-but-first-of((cs10 is fun))
 (is fun)

all-but-last-of(list) Returns a new list with the
first element removed.
Doesn’t change the original.

all-but-last-of((cs10 is fun))
 (cs10 is)

Extra Credit Question

Learning computing concepts may have opened many doors for you in your future work. Although you
may not ever use BYOB again, the concepts you have learned may become useful to you. Some
examples include:

• Provide you with enough basic programming skills that you could easily pick up another language
• Appreciating that no new technology is black or white, and the societal / ethical / economic

consequences are often unintended
• More conservatism w.r.t. social networks, your own privacy, e-voting, and the role of “big brother”,

which is anyone with access to your information: from a government to a university to your local
cloud provider.

• Provide you with basic analysis tools to estimate how an algorithm (or plan or idea, in the real
world) would scale as you grow the size of the input, to determine when a problem is
computationally tractable, and to recognize that some problems are not decidable.

• Empowering you to see a situation (say, how people are lining up to take a flight) and write a
simulation that would model it (say, boarding from the outside in vs back-to-front vs random) to
generate some data for your analysis.

Aside from the examples given, or enhancing the examples given, please describe a situation in which
you think the computing concepts you have learned will help you in the future.

