
CS 61A Structure and Interpretation of Computer Programs

Fall 2014 Midterm 2

INSTRUCTIONS

• You have 2 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5” ⇥ 11”
crib sheet of your own creation and the 2 o�cial 61A midterm study guides attached to the back of this exam.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation.

Last name

First name

SID

Login

TA & section time

Name of the person to
your left

Name of the person to
your right

All the work on this exam
is my own. (please sign)

For sta↵ use only

Q. 1 Q. 2 Q. 3 Q. 4 Q. 5 Total

/12 /14 /8 /8 /8 /50

2

Blank Page

3

1. (12 points) Class Hierarchy

For each row below, write the output displayed by the interactive Python interpreter when the expression is
evaluated. Expressions are evaluated in order, and expressions may a↵ect later expressions.

Whenever the interpreter would report an error, write Error. You should include any lines displayed before
an error. Reminder : The interactive interpreter displays the repr string of the value of a successfully evaluated
expression, unless it is None. Assume that you have started Python 3 and executed the following:

class Worker:

greeting = ’Sir’

def __init__(self):

self.elf = Worker

def work(self):

return self.greeting + ’, I work’

def __repr__(self):

return Bourgeoisie.greeting

class Bourgeoisie(Worker):

greeting = ’Peon’

def work(self):

print(Worker.work(self))

return ’My job is to gather wealth ’

class Proletariat(Worker):

greeting = ’Comrade ’

def work(self , other):

other.greeting = self.greeting + ’ ’ + other.greeting

other.work() # for revolution

return other

jack = Worker ()

john = Bourgeoisie ()

jack.greeting = ’Maam’

Expression Interactive Output
5*5

25

1/0

Error

Worker().work()

jack

jack.work()

Expression Interactive Output

john.work()[10:]

Proletariat().work(john)

john.elf.work(john)

4

2. (14 points) Space

(a) (8 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

f1: ___________ [parent=____________]

Return Value

f2: ___________ [parent=____________]

Return Value

def locals(only):
 def get(out):
 nonlocal only
 def only(one):
 return lambda get: out
 out = out + 1
 return [out + 2]
 out = get(-only)
 return only

only = 3
earth = locals(only)
earth(4)(5)

Global frame locals

only
func locals(only) [parent=Global]

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

3

f3: ___________ [parent=____________]

Return Value

f4: ___________ [parent=____________]

Return Value

5

(b) (6 pt) Fill in the blanks with the shortest possible expressions that complete the code in a way that results
in the environment diagram shown. You can use only brackets, commas, colons, and the names luke, spock,
and yoda. You *cannot* use integer literals, such as 0, in your answer! You also cannot call any
built-in functions or invoke any methods by name.

spock, yoda = 1, 2
!
!
luke = [__]
!
!
yoda = 0
!
!
yoda = [__]
!
!
yoda.append(__)

Global frame spock 1

luke

yoda

2

1

list
0 1 2

0
list

2
0
list

0
listlist

0 1 2
2

6

3. (8 points) This One Goes to Eleven

(a) (4 pt) Fill in the blanks of the implementation of sixty_ones below, a function that takes a Link instance
representing a sequence of integers and returns the number of times that 6 and 1 appear consecutively.

def sixty_ones(s):

""" Return the number of times that 1 directly follows 6 in linked list s.

>>> once = Link(4, Link(6, Link(1, Link(6, Link(0, Link (1))))))

>>> twice = Link(1, Link(6, Link(1, once)))

>>> thrice = Link(6, twice)

>>> apply_to_all(sixty_ones , [Link.empty , once , twice , thrice])

[0, 1, 2, 3]

"""

if ___:

return 0

elif ___:

return 1 + ___:

else:

return ___

(b) (4 pt) Fill in the blanks of the implementation of no_eleven below, a function that returns a list of all
distinct length-n lists of ones and sixes in which 1 and 1 do not appear consecutively.

def no_eleven(n):

""" Return a list of lists of 1’s and 6’s that do not contain 1 after 1.

>>> no_eleven (2)

[[6, 6], [6, 1], [1, 6]]

>>> no_eleven (3)

[[6, 6, 6], [6, 6, 1], [6, 1, 6], [1, 6, 6], [1, 6, 1]]

>>> no_eleven (4)[:4] # first half

[[6, 6, 6, 6], [6, 6, 6, 1], [6, 6, 1, 6], [6, 1, 6, 6]]

>>> no_eleven (4)[4:] # second half

[[6, 1, 6, 1], [1, 6, 6, 6], [1, 6, 6, 1], [1, 6, 1, 6]]

"""

if n == 0:

return ___

elif n == 1:

return ___

else:

a, b = no_eleven(___________________), no_eleven(___________________)

return [_________________ for s in a] + [_________________ for s in b]

7

4. (8 points) Tree Time

(a) (4 pt) A GrootTree g is a binary tree that has an attribute parent. Its parent is the GrootTree in which
g is a branch. If a GrootTree instance is not a branch of any other GrootTree instance, then its parent is
BinaryTree.empty.

BinaryTree.empty should not have a parent attribute. Assume that every GrootTree instance is a branch
of at most one other GrootTree instance and not a branch of any other kind of tree.

Fill in the blanks below so that the parent attribute is set correctly. You may not need to use all of the lines.
Indentation is allowed. You should not include any assert statements. Using your solution, the doctests for
fib_groot should pass. The BinaryTree class appears on your study guide.

Hint: A picture of fib_groot(3) appears on the next page.

class GrootTree(BinaryTree):

"""A binary tree with a parent."""

def __init__(self , entry , left=BinaryTree.empty , right=BinaryTree.empty):

BinaryTree.__init__(self , entry , left , right)

__

__

__

__

__

__

def fib_groot(n):

""" Return a Fibonacci GrootTree.

>>> t = fib_groot (3)

>>> t.entry

2

>>> t.parent.is_empty

True

>>> t.left.parent.entry

2

>>> t.right.left.parent.right.parent.entry

1

"""

if n == 0 or n == 1:

return GrootTree(n)

else:

left , right = fib_groot(n-2), fib_groot(n-1)

return GrootTree(left.entry + right.entry , left , right)

8

(b) (4 pt) Fill in the blanks of the implementation of paths, a function that takes two arguments: a GrootTree

instance g and a list s. It returns the number of paths through g whose entries are the elements of s. A
path through a GrootTree can extend either to a branch or its parent.

You may assume that the GrootTree class is implemented correctly and that the list s is non-empty.

The two paths that have entries [2, 1, 2, 1, 0] in fib_groot(3) are shown below (left). The one path
that has entries [2, 1, 0, 1, 0] is shown below (right).

2

1 1

0 1

2

1 1

0 1

2

1 1

0 1

Two paths for [2, 1, 2, 1, 0] One path for [2, 1, 0, 1, 0]

def paths(g, s):

""" The number of paths through g with entries s.

>>> t = fib_groot (3)

>>> paths(t, [1])

0

>>> paths(t, [2])

1

>>> paths(t, [2, 1, 2, 1, 0])

2

>>> paths(t, [2, 1, 0, 1, 0])

1

>>> paths(t, [2, 1, 2, 1, 2, 1])

8

"""

if g is BinaryTree.empty __:

return 0

elif __:

return 1

else:

xs = [___]

return sum([___ for x in xs])

9

5. (8 points) Abstraction and Growth

(a) (6 pt) Your project partner has invented an abstract representation of a sequence called a slinky, which
uses a transition function to compute each element from the previous element. A slinky explicitly stores
only those elements that cannot be computed by calling transition, using a starts dictionary. Each entry
in starts is a pair of an index key and an element value. See the doctests for examples.

Help your partner fix this implementation by crossing out as many lines as possible, but leaving a program
that passes the doctests. Do not change the doctests. The program continues onto the following page.

def length(slinky):

return slinky [0]

def starts(slinky):

return slinky [1]

def transition(slinky):

return slinky [2]

def slinky(elements , transition):

""" Return a slinky containing elements.

>>> t = slinky ([2, 4, 10, 20, 40], lambda x: 2*x)

>>> starts(t)

{0: 2, 2: 10}

>>> get(t, 3)

20

>>> r = slinky(range(3, 10), lambda x: x+1)

>>> length(r)

7

>>> starts(r)

{0: 3}

>>> get(r, 2)

5

>>> slinky ([], abs)

[0, {}, <built -in function abs >]

>>> slinky ([5, 4, 3], abs)

[3, {0: 5, 1: 4, 2: 3}, <built -in function abs >]

"""

starts = {}

last = None

for e in elements [1:]:

for index in range(len(elements)):

if not e:

if index == 0:

return [0, {}, transition]

if last is None or e != transition(last):

if e == 0 or e != transition(last):

if index == 0 or elements[index] != transition(elements[index -1]):

starts[index] = elements[index]

starts[index] = elements.pop(index)

starts[e] = transition(last)

starts[e] = last

last = e

return [len(starts), starts , transition]

return [len(elements), starts , transition]

return [len(starts), elements , transition]

return [len(elements), elements , transition]

10

def get(slinky , index):

""" Return the element at index of slinky."""

if index in starts(slinky):

return starts(slinky)[index]

start = index

start = 0

f = transition(slinky)

while start not in starts(slinky):

while not f(get(start)) == index:

start = start + 1

start = start - 1

value = starts(slinky)[start]

value = starts(slinky)[0]

value = starts(slinky)[index]

while start < index:

while value < index:

value = f(value)

value = value + 1

start = start + 1

start = start + index

return value

return f(value)

(b) (2 pt) Circle the ⇥ expression below that describes the number of operations required to compute
slinky(elements, transition), assuming that

• n is the initial length of elements,

• d is the final length of the starts dictionary created,

• the transition function requires constant time,

• the pop method of a list requires constant time,

• the len function applied to a list requires linear time,

• the len function applied to a range requires constant time,

• adding or updating an entry in a dictionary requires constant time,

• getting an element from a list by its index requires constant time,

• creating a list requires time that is proportional to the length of the list.

⇥(1) ⇥(n) ⇥(d) ⇥(n2) ⇥(d2) ⇥(n · d)

11

Scratch Paper

12

Scratch Paper

CS 61A Midterm 1 Study Guide – Page 1

208
mul(add(2, mul(4, 6)), add(3, 5))

add(2, mul(4, 6))
26mul

add 2
mul(4, 6)

mul 4 6

24

add(3, 5)

add 3 5

8

-2
2

-2
None

abs(number):

print(...):

display “-2”

2, 10
1024

pow(x, y):

Pure Functions

Non-Pure Functions

A name evaluates to
the value bound to
that name in the
earliest frame of
the current
environment in which
that name is found.

Defining:

Call expression:

square(x):

return mul(x, x)

>>> def

square(2+2)

Calling/Applying: square(x):

return mul(x, x)

Def
statement

Formal parameter

Body

Return
expression

(return statement)

operand: 2+2
argument: 4

operator: square
function: func square(x)

Intrinsic name

4

16Argument

Return value

 <header>:
 <statement>
 <statement>
 ...
 <separating header>:
 <statement>
 <statement>
 ... 
 ...

Compound statement

Suite

Clause

Each clause is considered in order.
1.Evaluate the header's expression.
2.If it is a true value, execute the suite, then skip the
remaining clauses in the statement.

1. Evaluate the header’s expression.
2. If it is a true value, execute the (whole) suite, then
return to step 1.

Execution rule for while statements:

Execution rule for def statements:

Execution rule for assignment statements:

Evaluation rule for call expressions:

Execution rule for conditional statements: hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single
argument (not called term)

A formal parameter that
will be bound to a function

The function bound to term
gets called here

The cube function is passed
as an argument value

0 + 13 + 23 + 33 + 43 + 55

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

Nested def statements: Functions defined within other
function bodies are bound to names in the local frame

Evaluation rule for or expressions:

Evaluation rule for and expressions:

Evaluation rule for not expressions:

Applying user-defined functions:

1.Evaluate the operator and operand subexpressions.
2.Apply the function that is the value of the operator
subexpression to the arguments that are the values of the
operand subexpressions.

1.Create a new local frame with the same parent as the
function that was applied.

2.Bind the arguments to the function's formal parameter
names in that frame.

3.Execute the body of the function in the environment
beginning at that frame.

1.Create a new function value with the specified name,
formal parameters, and function body.

2.Its parent is the first frame of the current environment.
3.Bind the name of the function to the function value in the
first frame of the current environment.

1.Evaluate the expression(s) on the right of the equal sign.
2.Simultaneously bind the names on the left to those values,
in the first frame of the current environment.

1.Evaluate the subexpression <left>.
2.If the result is a false value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

1.Evaluate <exp>; The value is True if the result is a false
value, and False otherwise.

A name is bound to a value

In a frame, there is at most
one binding per name

Statements and expressions
Red arrow points to next line. 
Gray arrow points to the line
just executed

Frames (right):Code (left):

Import statement

Assignment statement

Name Value

Binding

Local frame

Intrinsic name of
function called

Formal parameter
bound to
argument

Return value is 
not a binding!

Built-in function

User-defined
function

2

1

“y” is
not found

“y” is
not found

Error

 def abs_value(x):
!
 if x > 0:
 return x
 elif x == 0:
 return 0
 else:
 return -x

1 statement,
3 clauses, 
3 headers,
3 suites,
2 boolean 
 contexts

•An environment is a
sequence of frames

•An environment for a
non-nested function
(no def within def)
consists of one local
frame, followed by the
global frame

2

1

1

2

1

B
A B

A

A call expression and the body
of the function being called
are evaluated in different
environments

1.Evaluate the subexpression <left>.
2.If the result is a true value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

def fib(n):
 """Compute the nth Fibonacci number, for N >= 1."""
 pred, curr = 0, 1 # Zeroth and first Fibonacci numbers
 k = 1 # curr is the kth Fibonacci number
 while k < n:
 pred, curr = curr, pred + curr
 k = k + 1
 return curr

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.
!
 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

CS 61A Midterm 1 Study Guide – Page 2

A function that returns a function

A local
def statement

The name add_three is
bound to a function

Can refer to names in
the enclosing function

square = lambda x,y: x * y

that returns the value of "x * y"
with formal parameters x and y

A function

Must be a single expression

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both functions have as their parent the environment in which they
were defined.

• Both bind that function to the name square.

• Only the def statement gives the function an intrinsic name.

from operator import floordiv, mod
def divide_exact(n, d):
 """Return the quotient and remainder of dividing N by D.
!
 >>> q, r = divide_exact(2012, 10)
 >>> q
 201
 >>> r
 2
 """
 return floordiv(n, d), mod(n, d)

Multiple return values,
separated by commas

Multiple assignment 
to two names

•Every user-defined function has
a parent frame (often global)

•The parent of a function is the
frame in which it was defined

•Every local frame has a parent
frame (often global)

•The parent of a frame is the
parent of the function called

Evaluates to a function. 
No "return" keyword!

def curry2(f):!
 """Returns a function g such that g(x)(y) returns f(x, y)."""!
 def g(x):!
 def h(y):!
 return f(x, y)!
 return h!
 return g

• The def statement header is similar to other functions
• Conditional statements check for base cases
• Base cases are evaluated without recursive calls
• Recursive cases are evaluated with recursive calls
def sum_digits(n):!

 """Return the sum of the digits of positive integer n."""!
 if n < 10:!
 return n!
 else:!
 all_but_last, last = n // 10, n % 10!
 return sum_digits(all_but_last) + last

Currying: Transforming a multi-argument
function into a single-argument,
higher-order function.

def count_partitions(n, m):!
 if n == 0:!
 return 1!
 elif n < 0:!
 return 0!
 elif m == 0:!
 return 0!
 else:!
 with_m = count_partitions(n-m, m) !
 without_m = count_partitions(n, m-1)!
 return with_m + without_m

• Recursive decomposition:
finding simpler instances of
a problem.

• E.g., count_partitions(6, 4)
• Explore two possibilities:
• Use at least one 4
• Don't use any 4

• Solve two simpler problems:
• count_partitions(2, 4)
• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

When a function is defined:
1. Create a function value: func <name>(<formal parameters>)
2. Its parent is the current frame. 

 
 

3. Bind <name> to the function value in the current frame 
(which is the first frame of the current environment).

When a function is called:
1. Add a local frame, titled with the <name> of the function being

called.
2. Copy the parent of the function to the local frame: [parent=<label>]
3. Bind the <formal parameters> to the arguments in the local frame.
4. Execute the body of the function in the environment that starts with

the local frame.

2

1

3

Nested
def

A function’s signature
has all the information
to create a local frame

• w

Is fact implemented correctly?
1. Verify the base case.
2. Treat fact as a functional abstraction!
3. Assume that fact(n-1) is correct.
4. Verify that fact(n) is correct,

assuming that fact(n-1) correct.

• Each cascade frame is
from a different call
to cascade.

• Until the Return value
appears, that call has
not completed.

• Any statement can
appear before or after
the recursive call.

grow = lambda n: f_then_g(grow, print, n//10)
shrink = lambda n: f_then_g(print, shrink, n//10)

def f_then_g(f, g, n):
 if n:
 f(n)
 g(n)

1  
12  
123 
1234 
123 
12  
1

def inverse_cascade(n):
 grow(n)
 print(n)
 shrink(n) def fib(n):!

 if n == 0:!
 return 0!
 elif n == 1:!
 return 1!
 else:!
 return fib(n-2) + fib(n-1)

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n):

Anatomy of a recursive function:

Represents
integers
exactly

Represents real
numbers

approximately

Numeric types in Python:
!
>>> type(2)
<class 'int'>
!
>>> type(1.5)
<class 'float'>
!
>>> type(1+1j)
<class 'complex'>

CS 61A Midterm 2 Study Guide — Page 1

def pair(x, y):
 """Return a functional pair."""
 def get(index):
 if index == 0:
 return x
 elif index == 1:
 return y
 return get

def select(p, i):
 """Return element i of pair p."""
 return p(i)

This function
represents a

pair

Constructor is a
higher-order function

Selector defers to
the object itself

Functional pair implementation:

>>> p = pair(1, 2)
>>> select(p, 0)
1
>>> select(p, 1)
2

>>> digits = [1, 8, 2, 8]
>>> len(digits)
4
>>> digits[3]
8
>>> [2, 7] + digits * 2
[2, 7, 1, 8, 2, 8, 1, 8, 2, 8]

>>> pairs = [[10, 20], [30, 40]]
>>> pairs[1]
[30, 40]
>>> pairs[1][0]
30

>>> pairs=[[1, 2], [2, 2], [3, 2], [4, 4]]
>>> same_count = 0

>>> for x, y in pairs:
... if x == y:
... same_count = same_count + 1
!
>>> same_count
2

A sequence of  
fixed-length sequences

A name for each element in a
fixed-length sequence

for <name> in <expression>:
 <suite>
1. Evaluate the header <expression>,

which must yield an iterable value
(a sequence)

2. For each element in that sequence,
in order:
A. Bind <name> to that element in

the current frame
B. Execute the <suite>

Executing a for statement:

Lists:

Unpacking in a 
for statement:

>>> list(range(-2, 2))
[-2, -1, 0, 1]
!
>>> list(range(4))
[0, 1, 2, 3]

..., -3, -2, -1, 0, 1, 2, 3, 4, ...

range(-2, 2)
Length: ending value - starting value
Element selection: starting value + index

List constructor

Range with a 0
starting value

[<map exp> for <name> in <iter exp> if <filter exp>]

Short version: [<map exp> for <name> in <iter exp>]

A combined expression that evaluates to a list using this
evaluation procedure:
1. Add a new frame with the current frame as its parent
2. Create an empty result list that is the value of the

expression
3. For each element in the iterable value of <iter exp>:

A. Bind <name> to that element in the new frame from step 1
B. If <filter exp> evaluates to a true value, then add

the value of <map exp> to the result list

List comprehensions:

def apply_to_all(map_fn, s):
 """Apply map_fn to each element of s.
!
 >>> apply_to_all(lambda x: x*3, range(5))
 [0, 3, 6, 9, 12]
 """
 return [map_fn(x) for x in s] 0, 3, 6, 9, 12

0, 1, 2, 3, 4

λx: x*3

 6, 7, 8, 9

 0, 1, 2, 3, 4,
 5, 6, 7, 8, 9

λx: x>5

def keep_if(filter_fn, s):
 """List elements x of s for which
 filter_fn(x) is true.
!
 >>> keep_if(lambda x: x>5, range(10))
 [6, 7, 8, 9]
 """
 return [x for x in s if filter_fn(x)]

def reduce(reduce_fn, s, initial):
 """Combine elements of s pairwise using reduce_fn,  
 starting with initial.
 """
 r = initial
 for x in s:
 r = reduce_fn(r, x)
 return r

reduce(pow, [1, 2, 3, 4], 2)

pow 2 1

pow

pow

pow

2 2

4 3

64 4

16,777,216

[

[

>>> digits = [1, 8, 2, 8]
>>> 2 in digits
True
>>> 1828 not in digits
True

>>> digits[0:2]
[1, 8]
>>> digits[1:]
[8, 2, 8]

Membership: Slicing:

Slicing creates
a new object

>>> city = 'Berkeley'
>>> len(city)
8
>>> city[3]
'k'
>>> 'here' in "Where's Waldo?"
True
>>> 234 in [1, 2, 3, 4, 5]
False
>>> [2, 3, 4] in [1, 2, 3, 4]
False

Strings as sequences:

>>> a = [10]
>>> b = [10]
>>> a == b
True
>>> b.append(20)
>>> a
[10]
>>> b
[10, 20]
>>> a == b
False

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a == b
True
>>> a
[10, 20]
>>> b
[10, 20]

>>> suits = ['coin', 'string', 'myriad']
>>> original_suits = suits
>>> suits.pop()
'myriad'
>>> suits.remove('string')
>>> suits.append('cup')
>>> suits.extend(['sword', 'club'])
>>> suits[2] = 'spade'
>>> suits
['coin', 'cup', 'spade', 'club']
>>> suits[0:2] = ['heart', 'diamond']
>>> suits
['heart', 'diamond', 'spade', 'club']
>>> original_suits
['heart', 'diamond', 'spade', 'club']

>>> nums = {'I': 1.0, 'V': 5, 'X': 10}
>>> nums['X']
10
>>> nums['I'] = 1
>>> nums['L'] = 50
>>> nums
{'X': 10, 'L': 50, 'V': 5, 'I': 1}
>>> sum(nums.values())
66
>>> dict([(3, 9), (4, 16), (5, 25)])
{3: 9, 4: 16, 5: 25}
>>> nums.get('A', 0)
0
>>> nums.get('V', 0)
5
>>> {x: x*x for x in range(3,6)}
{3: 9, 4: 16, 5: 25}

List & dictionary mutation:

Identity:
<exp0> is <exp1>
evaluates to True if both <exp0> and
<exp1> evaluate to the same object
Equality:
<exp0> == <exp1>
evaluates to True if both <exp0> and
<exp1> evaluate to equal values
Identical objects are always equal values

The parent
frame contains
the balance of

withdraw

Every call
decreases the
same balance

def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 return 'No funds'
 balance = balance - amount
 return balance
 return withdraw

>>> withdraw = make_withdraw(100)
>>> withdraw(25)
75
>>> withdraw(25)
50

x = 2Status Effect
•No nonlocal statement
•"x" is not bound locally

Create a new binding from name "x" to number 2
in the first frame of the current environment

•No nonlocal statement
•"x" is bound locally

Re-bind name "x" to object 2 in the first frame
of the current environment

•nonlocal x
•"x" is bound in a  
non-local frame
•"x" also bound locally

SyntaxError: name 'x' is parameter and nonlocal

•nonlocal x
•"x" is not bound in
a non-local frame

SyntaxError: no binding for nonlocal 'x' found

•nonlocal x
•"x" is bound in a
non-local frame

Re-bind "x" to 2 in the first non-local frame of
the current environment in which "x" is bound

You can copy a list by calling the list
constructor or slicing the list from the
beginning to the end.

�(bn)

�(n)

�(log n)

�(1)

⇥(n2)

Exponential growth. Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n)
by a factor

Linear growth. E.g., factors or exp

Logarithmic growth. E.g., exp_fast
Doubling the problem only increments R(n)
Constant. The problem size doesn't matter

Quadratic growth. E.g., overlap
Incrementing n increases R(n) by the
problem size n

Type dispatching: Look up a cross-type implementation of an
operation based on the types of its arguments
Type coercion: Look up a function for converting one type to
another, then apply a type-specific implementation.

Constants: Constant terms do not affect
the order of growth of a process

Logarithms: The base of a logarithm does
not affect the order of growth of a process

Nesting: When an inner process is repeated
for each step in an outer process,multiply
the steps in the outer and inner processes
to find the total number of steps

⇥(n) ⇥(500 · n) ⇥(
1

500
· n)

⇥(log2 n) ⇥(log10 n) ⇥(lnn)

def overlap(a, b):
 count = 0
 for item in a:
 if item in b:
 count += 1
 return count

Outer: length of a

Inner: length of b

If a and b are both length n,
then overlap takes steps⇥(n2)
Lower-order terms: The fastest-growing part
of the computation dominates the total

⇥(n2 + n)⇥(n2) ⇥(n2
+ 500 · n+ log2 n+ 1000)

R
(n

)
=

�
(f

(n
))

k 1
·f

(n
)

�
R

(n
)

�
k 2

·f
(n

)

me
an

s
th

at
 t

he
re

 a
re

 p
os

it
iv

e
co

ns
ta

nt
s
k 1
 a

nd
 k

2
su

ch
 t

ha
t

fo
r

al
l
n

la
rg

er
 t

ha
n

so
me

 m

digits

pairs

When a class is called:
1.A new instance of that class is created:
2.The __init__ method of the class is called with the new object as its first

argument (named self), along with any additional arguments provided in the
call expression.

An account instance

Idea: All bank accounts have a balance and an account holder;  
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')
>>> a.holder
'Jim'
>>> a.balance
0

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder
 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance
 def withdraw(self, amount):
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance - amount
 return self.balance

balance: 0 holder: 'Jim'

__init__ is called a
constructor

self should always be
bound to an instance of
the Account class or a
subclass of Account

A new instance is
created by calling a

class

<expression> . <name>
The <expression> can be any valid Python expression.
The <name> must be a simple name.
Evaluates to the value of the attribute looked up by <name> in the object
that is the value of the <expression>.

Dot expression

Call expression

>>> type(Account.deposit)
<class 'function'>
>>> type(a.deposit)
<class 'method'>

>>> Account.deposit(a, 5)
10
>>> a.deposit(2)
12

Function call: all
arguments within

parentheses

Method invokation:
One object before
the dot and other
arguments within

parentheses

Assignment statements with a dot expression on their left-hand side affect
attributes for the object of that dot expression
• If the object is an instance, then assignment sets an instance attribute
• If the object is a class, then assignment sets a class attribute

To evaluate a dot expression:
1. Evaluate the <expression> to the left of the dot, which yields

the object of the dot expression
2. <name> is matched against the instance attributes of that object;

if an attribute with that name exists, its value is returned
3. If not, <name> is looked up in the class, which yields a class

attribute value
4. That value is returned unless it is a function, in which case a

bound method is returned instead

or
 return super().withdraw(amount + self.withdraw_fee)

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self, amount + self.withdraw_fee)

CS 61A Midterm 2 Study Guide — Page 2

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05
>>> jim_account.interest
0.08

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

0.05

Instance
attributes of
jim_account

Instance
attributes of
tom_account

To look up a name in a class:
1. If it names an attribute in the class, return the attribute value.
2. Otherwise, look up the name in the base class, if there is one.
>>> ch = CheckingAccount('Tom') # Calls Account.__init__
>>> ch.interest # Found in CheckingAccount
0.01
>>> ch.deposit(20) # Found in Account
20
>>> ch.withdraw(5) # Found in CheckingAccount
14

empty = 'empty'
!
def link(first, rest):
 return [first, rest]
!
def first(s):
 return s[0]
!
def rest(s):
 return s[1]
!
def len_link(s):
 x = 0
 while s != empty:
 s, x = rest(s), x+1
 return x
!
def getitem_link(s, i):
 while i > 0:
 s, i = rest(s), i - 1
 return first(s)
!
def extend(s, t):
 assert is_link(s) and is_link(t)
 if s == empty:
 return t
 else:
 return link(first(s), extend(rest(s), t))
!
def apply_to_all_link(f, s):
 if s == empty:
 return s
 else:
 return link(f(first(s)), apply_to_all_link(f, rest(s)))

def partitions(n, m):
 """Return a linked list of partitions
 of n using parts of up to m.
 Each partition is a linked list.
 """
 if n == 0:
 return link(empty, empty)
 elif n < 0:
 return empty
 elif m == 0:
 return empty
 else:
 # Do I use at least one m?
 yes = partitions(n-m, m)
 no = partitions(n, m-1)
 add_m = lambda s: link(m, s)
 yes = apply_to_all_link(add_m, yes)
 return extend(yes, no)

A linked list
is a pair

The 0-indexed element of the
pair is the first element of

the linked list

The 1-indexed element
of the pair is the rest

of the linked list

"empty"
represents
the empty

list

link(1, link(2, link(3, link(4, empty) 
represents the sequence

1 2 3 4

Linked list data abstraction: Python object system:

The result of calling repr on a value is
what Python prints in an interactive session

>>> 12e12
12000000000000.0
>>> print(repr(12e12))
12000000000000.0

The result of calling str on a value is  
what Python prints using the print function

>>> print(today)
2014-10-13

str and repr are both polymorphic; they apply to any object
repr invokes a zero-argument method __repr__ on its argument

>>> today.__repr__()
'datetime.date(2014, 10, 13)'

>>> today.__str__()
'2014-10-13'

def memo(f):
 cache = {}
 def memoized(n):
 if n not in cache:
 cache[n] = f(n)
 return cache[n]
 return memoized

 class Link:
 empty = ()

Yes, this call is recursive

Some zero
length sequence

 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest
 def __getitem__(self, i):
 if i == 0:
 return self.first
 else:
 return self.rest[i-1]
 def __len__(self):
 return 1 + len(self.rest)

class Tree:
 def __init__(self, entry, branches=()):
 self.entry = entry
 for branch in branches:
 assert isinstance(branch, Tree)
 self.branches = list(branches)

Built-in isinstance
function: returns True if
branch has a class that
is or inherits from Tree

7

3

1

5 9

11
E

E: An empty tree

E E

E E

E E

class BinaryTree(Tree):
 empty = Tree(None)
 empty.is_empty = True
 def __init__(self, entry, left=empty, right=empty):
 Tree.__init__(self, entry, (left, right))
 self.is_empty = False
 @property
 def left(self):
 return self.branches[0]
 @property
 def right(self):
 return self.branches[1]

Bin = BinaryTree
t = Bin(3, Bin(1),
 Bin(7, Bin(5),
 Bin(9, Bin.empty,
 Bin(11))))

Sequence abstraction special names:

__len__

__getitem__ Element selection []

Built-in len function

Memoization:

