
Midterm 2 Solutions
8B Lecture 2 Spring 2014

1. To find the force on the wires use the equation for the magnetic force on a current I
along a straight path given by the vector ~l due to some magnetic field ~B

~F = I~l × ~B

Here the magnetic field is constant ~B = 2.0k̂ T for a rectangular region and zero
outside, and each wire carries the same current I = 2.5 A.

(a) There are three straight segments of wire in the region where the field is nonzero.
The direction vectors for these segments are as follows.

~l1 = 3.0ĵ m

~l2 = 4.0̂i m

~l3 = −3.0ĵ m

Note that the force on segments 1 and 3 will be the same magnitude by the force
law, and in opposite directions by the right hand rule, so these forces will add to
zero. Therefore the total force on the wire is the force on segment 2.

~F = (2.5 A)(4.0̂i m)× (2.0k̂ T) = 20̂i× k̂ N = −20ĵ N

Where the final cross product was done by the right hand rule.

(b) Here there are two straight segments given by the following direction vectors.

~l1 = (4̂i+ 3.0ĵ) m

~l2 = −3.0ĵ m

Since these forces will not be in the same direction by the right hand rule, calculate
them explicitly.

~F1 = (2.5 A)((4.0̂i+ 3.0ĵ) m)× (2.0k̂ T) = (20̂i× k̂+ 15ĵ× k̂) N = (15̂i−20ĵ) N

~F2 = (2.5 A)(−3.0ĵ m)× (2.0k̂ T) = −15(ĵ × k̂) N = −15̂i N

Where the linearity of the cross product ((~a+~b)×~c = ~a×~c+~b×~c) was used. So
then the total force on the wire is the sum of the forces on these two segments

~F = ~F1 + ~F2 = −20ĵ N

(c) Like the previous two parts, calculate the forces on each of the three straight
segments and sum to get the final force, but notice the following.

~F = ~F1 + ~F2 + ~F3 = I~l1 × ~B + I~l2 × ~B + I~l3 × ~B = I(~l1 +~l2 +~l3)× ~B

Then from the geometry ~l1 +~l2 +~l3 = 4.0̂i m so solve for the total force.

~F = (2.5 A)(4.0̂i m)× (2.0k̂ T) = 20̂i× k̂ N = −20ĵ N



2. (a) First use Faraday’s law to find the EMF induced in this loop. Assuming the rails
start at the center at time t = 0 and then move outwards at a constant velocity,
the area of the loop A(t) is given by:

A(t) = l × 2vt = 2lvt

Then, since the magnetic field ~B is constant and perpendicular to the area, the
flux Φ(t) is simply the product of the magnitude of the field and the area.

Φ(t) = BA(t) = 2Blvt

Faraday’s law states that the EMF in the loop is related to the time derivative of
the flux.

ε = −dΦ

dt
= −2Blv

The magnitude of this EMF is the same as the magnitude of the potential V
in this circuit which consists of two resistances R in series. Therefore the loop
equation for this circuit gives the relationship to the magnitude of the current in
the circuit.

V = 2RI = 2Blv

⇒ I =
Blv

R

The direction of the current can then be found by the right hand rule and Lenz’s
law. Since the area of the loop is increasing and the field is constant and into
the page, the flux is increasing into the page, therefore the induced current would
generate a field pointing out of the page to fight this increase in flux into the page.
By the right hand rule the current should be counterclockwise .

(b) Since the rods are moving at constant velocity, the total force on each rod must
be zero. Because there is a current in the rods and the field is nonzero, they
will experience a magnetic force similar to the first problem. By the previously
calculated direction of current and the right hand rule the magnetic force on the
left rod should be to the right and the magnetic force on the right rod should be
to the left. The external force necessary to make the total force on the rods zero
should be equal and opposite to the magnetic force on each rod. Since they both
have the same current in the same field and are the same length, the magnitude
of the magnetic force |~F | is the same for both rods.

|~F | = F = IlB sin θ = IlB =
vl2B2

R

Where θ = π
2

is the angle between the direction of current ~l and the mag-

netic field ~B, and the last equality is the result of plugging in part (a). An

external force of this magnitude must be exerted to the left on the left rod and

to the right on the right rod .



(c) Since energy is conserved, the power being dissipated by the circuit must be the
equal to the power being provided to the circuit. Since the external force provides
all the power, calculate the power being dissipated by the circuit. Here the circuit
is simply a resistor with resistance 2R, so the power being dissipated is given by
the relationship (for a resistor resistance R) P = IV = I2R.

P =

(
Blv

R

)2

(2R) =
2B2l2v2

R

3. Ultimately use the geometry of the problem, the small angle approximation, Snell’s
law, and the law of reflection to solve for n2/n1.

(a) Since φ1 and φ2 form an isosceles triangle with the third vertex being the center
of the sphere they must satisfy φ1 = φ2 = φ.

φ1

φ2

= 1

(b) Use the remaining geometry to solve for θ/φ. According to this diagram with extra
labels present β = π

2
− θ, and by the law of reflection, which is given explicitly in

the geometry, α = φ. Finally, the sum of the interior angles in the bold triangle
must add up to π.

π = 2β + 2α + 2φ = π − 2θ + 4φ

⇒ θ = 2φ

⇒ θ

φ
= 2

(c) Snell’s law gives another relationship between θ and φ.

n1 sin θ = n2 sinφ

Since θ is assumed to be a small angle, φ will necessarily be small as well, so make
the small angle approximation (sinx→ x when x << 1).

n1 sin θ = n2 sinφ→ n1θ = n2φ



⇒ n2

n1

=
θ

φ

Then plug this into the result from part (b) to obtain the answer.

n2

n1

= 2

4. (a) See the following diagram, which is a reasonably accurate approximation of the
correct answer. The solid rays are for tracing the first lens, then the image of
the first lens becomes the object for the second lens, with dashed rays for the ray
tracing of the second lens.

(b) Here we need to solve the thin lens equation for both stages of this two lens system
and then find the relative position of the final image to the first lens d. s1 and
s′1 will be the object and image distances for the first lens f1 = f while s2 and s′2
will be the object and image distance for the second lens f2 = −f

2
. First use the

thin lens equation to solve the for s′1 given the object distance s1 = 2f .

1

s1
+

1

s′1
=

1

f1
⇒ 1

2f
+

1

s′1
=

1

f

⇒ s′1 = 2f

This gives the real image show as ri1 in the diagram. This image becomes the
object for the second lens vo2. Since it is to the right of the lens it is a virtual
object, so s2 < 0. Since the second lens is f/4 to the right of the first lens the
geometry gives the following relationship between s′1 and s2.

s2 = −
(
s′1 −

f

4

)
= −7f

4



Use this object distance in the thin lens equation for the second lens to solve for
the final image position relative to second lens s′2.

1

s2
+

1

s′2
=

1

f2
⇒ − 4

7f
+

1

s′1
= − 2

f

⇒ s′2 = −7f

10

Which means the final image is virtual and to the left of the second lens by a
distance 7f/10 at the location of vi2 in the diagram. Since this distance is greater
than the separation between the two lenses, the final image is to the left of the
first lens as shown in the diagram. Use the geometry of the problem to find the
distance d between the final image and the first lens.

d = |s′2| −
f

4
=

7f

10
− f

4
=

9f

20

(c) To find the focal length fc of a single lens at the location of the first lens that
produces an image at the same location of this two lens system, plug the object
distance sc = 2f and image distance s′c = −d into the thin lens equation. Here
the signs of the distances are given by the sign convention for lenses. Solve for
the focal length.

1

sc
+

1

s′c
=

1

fc
⇒ 1

2f
− 20

9f
=

1

fc

fc = − 18

31f

5. For this problem there is a magnetic field produced by the current in the center that
is canceled exactly by the magnetic field generated by a changing electric field in some
circular region of radius a. To solve this problem, use the corrected form of Ampere’s
law. ∮

path

~B · d~l = µ0Ienc + µ0εo
∂

∂t

∮
surface

~E · d~a

(a) Since the field outside of the region of radius a is zero, use the corrected form

of Ampere’s law to solve for the necessary rate of change of ~E to make this true
by choosing a circular path concentric with the region of radius r > a. ~B is zero
along this entire path. ∮

path

~B · d~l = 0

This path is bounded by a surface that covers the entire region of changing electric
field, and that region has an area πa2 with the electric field perpendicular to the
surface. ∮

surface

~E · d~a = Eπa2



This surface has a current I flowing through it, so Ienc = I. Write down Ampere’s
law making these substitutions.

0 = µ0I + µ0ε0
∂

∂t
Eπa2

Now take the derivate with respect to time and simplify the equation.

0 = I + ε0πa
2∂E

∂t

⇒ ∂E

∂t
= − I

ε0πa2

(b) Since ∂E
∂t

is now known, use the corrected form of Ampere’s law to solve for the

magnetic field ~B(r) for r < a by choosing a circular path of radius r. Now ~B(r)
is nonzero, but is the same B magnitude at a constant radius by symmetry.∮

path

~B · d~l = B2πr

Now the path bounds a surface that encloses only part of the changing electric
field up to radius r so the area is πr2 and the electric field is perpendicular to the
surface. ∮

surface

~E · d~a = Eπr2

This surface also has a current I flowing through it still so Ienc = I. Substitute
these expressions into the corrected form of Ampere’s law.

B2πr = µ0I + µ0ε0
∂

∂t
Eπr2

Take the derivative.

B2πr = µ0I + µ0ε0πr
2∂E

∂t

Plug in the result from part (a) and solve for B(r).

B2πr = µ0I − µ0I
r2

a2

⇒ B(r) =
µ0I

2πr

(
1− r2

a2

)


