PLEASE DO NOT OPEN THIS COVER SHEET UNTIL TOLD TO DO SO

PRINT YOUR NAME
SIGN YOUR NAME
University of California, Berkeley
Physics 105, Section 1 - Spring Semester 1994
SECOND MIDTERM EXAMINATION
Friday, March 25
INSTRUCTIONS;

1. This is an open-book examination; but you may use only (1) our textbook, (2) your class notes, (3) your problems and the distributed solutions, (4) integral tables, and (5) a calculator.
2. Write ONLY on the pages of this exam. Put each answer in its box so it can be found easily when scoring your work. In the space by each question write your steps to the answer; be brief, but clear. Write equations, not sentences, unless required. YOU MUST SHOW YOUR STEPS! No credit will be given for unsupported results, or for illegible work. Do scratch work entirely on the exam; if more space is needed use the backs of the sheets. Do not separate the sheets.
3. The points for each part are shown in the left margin; the total is 100 points.
4. KEEP MOVING! Do not get bogged down. Before starting, scan the entire exam, marking parts you think you can do well; then do them first. If you get stuck, or are moving slowly, skip that part and move on, returning if time remains. A COMMON REASON FOR A POOR SCORE IS FAILING TO WORK AT ALL ON AN EASY PART THAT COMES LATE IN THE EXAM.

PROBLEM	POINTS
1	
2	
3	
TOTAL	

Physics 105, Sec. 1 - Spring 1994
Second Midterm Exam - page 1
PROBLEM 1
A particular Lagrangian function for a particle with charge q and mass m is:

$$
\mathrm{L}=(\mathrm{m} / 2)\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right]+\mathrm{qB} \dot{z} \mathrm{x} .
$$

B is a constant parameter; it is a magnetic field strength.

(b) Find Lagrange's equations of motion for x and z .
(c) Find expressions for three constants of the motion (first integrals); these are functions of $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{x}, \mathrm{y}, \mathrm{z}$, and the constants m, q, and B .

Physics 105, Sec. 1 - Spring 1994
Second Midterm Exam - page 2
PROBLEM 1 (continued)
(6)
(d) Find the Hamiltonian H as a function of $x, y, z, p_{x}, p_{y}, p_{z}$ and the constants.

$$
H=
$$

(6)
(e) Find $x(t)$ and $z(t)$.

$x(t)=$
$z(t)=$

(4)
(f) Write Hamilton's canonical equations of motion for x and p_{x}.

Physics 105, Sec. 1 - Spring 1994 Second Midterm Exam - page 3

PROBLEM 2

Three identical smooth hard spheres with radius a are positioned as shown, with two at rest separated by a distance $2 \mathrm{~d}=2 \mathrm{a} / 5$ and the third moving toward them with velocity $\mathbf{v}_{\mathbf{O}}$ along a line perpendicular to and bisecting their line of centers. After they collide the first two move away with speed v 2 at equal angles θ from $\mathbf{v}_{\mathbf{O}}$ and the third has velocity \mathbf{v} parallel to $\mathbf{v}_{\mathbf{O}}$.
(a) Write the equations for conservation of momentum and of energy.
(8)
(b) Find $\sin \theta$ and $\cos \theta$.
$\sin \theta=$
$\cos \theta=$
(c) Find $v 2 / v_{0}$.

$$
\sqrt{2} / v_{0}=
$$

(d) Find v / v_{0}.

$$
v / \nu_{0}=
$$

Physics 105, Sec. 1 - Spring 1994 Second Midterm Exam - page 4

PROBLEM 3

For long-period comets ($>200 \mathrm{yr}$) the aphelion is very far from the sun; because the major axis 2 a is so large, the total energy $\mathrm{E}=-\mathrm{k} / 2 \mathrm{a}$ is very small, and can be put to zero in this problem. Consider such a comet whose perihelion is at the orbit of Mercury, a distance $\mathrm{r}_{\mathrm{m}}{ }^{\prime}=0.387$ AU from the sun. How much time T does it spend inside the earth's orbit ($\mathrm{re}^{\prime}=1 \mathrm{AU}$) during one pass around the sun? Give your final answer in years, ands show that this number depends only on pure numbers such as π and $21 / 2$ and the dimensionless ratio of radii $0.387 \mathrm{AU} / 1 \mathrm{AU}=0.387$.
PROCEDURE:
(a) Prove that $(\mathrm{L} / \mathrm{m})^{2}=2 \mathrm{GMr} \mathrm{m}$ with $\mathrm{L}=$ angular momentum, $\mathrm{M}=$ solar mass, and $\mathrm{m}=$ comet mass. (This only takes 2 or 3 lines; if you can't do it, use the result below.)
(b) Use the energy equation $\mathrm{E}=(\mathrm{m} / 2)\left[\mathrm{r}^{2}+(\mathrm{L} / \mathrm{mr})^{2}\right]-\mathrm{GMm} / \mathrm{r} \approx 0$ (text, p. 248), and the result from (a) above, to find $r=d r / d t$ in terms of $2 G M, r$, and r_{m} only.

Physics 105, Sec. 1 - Spring 1994
Second Midterm Exam - page 5
PROBLEM 3 (continued)
(c) Separate the variables r and t, and integrate on r from r_{m} to r_{e} to evaluate T/2. Write T in the form

$$
\mathrm{T}=\left(\mathrm{r} \mathrm{e}^{3 /(2 \mathrm{GM})^{1 / 2} \mathrm{f}(\mathrm{x}),}\right.
$$

with $x=r_{m} / r_{e}$; that is, find the function $f(x)$. [Write the physical constants out front so that what remains, your $f(x)$, is dimensionless.]

You may confront one of these integrals: $\int(y-1)^{-1 / 2} \mathrm{dy}=2(\mathrm{y}-1)^{1 / 2}$;
$\int y(y-1)^{-1 / 2} d y=(2 / 3)(y+2)(y-1)^{1 / 2} ; \int y^{-1}(y-1)^{-1 / 2} d y=2 \tan ^{-1}(y-1)^{1 / 2}$. [HINT: The y in these integrals is $\mathrm{r} / \mathrm{r} \mathrm{m}$, NOT x .]

$$
f(x)=
$$

(d) [An independent question] Express $\mathrm{re}^{3 /(2 G M)}$ in terms of $\tau_{\mathrm{e}}=1 \mathrm{yr}$. (text, p. 259)

(2)
(e) Using the results of (c) and (d), find T in years.

