University of California, Berkeley

Physics 105 Spring 1987 Midterm #2 Section 1 Wed. 22 April

1. A comet at a distance of 1.000 \times 10⁸ km from the Sun is observed to travel at a speed of 51.6000 km/s. Its velocity vector makes an angle of 45° with respect to the sun-comet line. Useful information: The escape speed from Sun's gravity at a distance r' astronomical units (A.U.) is

$$V_{esc} = \frac{42.131224 \text{ km/s}}{\sqrt{\Gamma}}$$

1 A.U. = 1.5000 x 10 8 km; GM $_{0}$ = 1.3273 x 10 20 MKS.M $_{0}$ is the mass of the Sun.

- (a) What is the total energy of this comet?
- (b) Find the distance of closest approach to the Sun (r_{MIN}) .
- (c) Find the equation of the comet's orbit. You may choose θ = 0 at $r = r_{MIN}$.
- 2. Centrifuges are sometimes used to study effects of accelerations much larger than $g=9.8 \text{ m/s}^2$ on animals. Hinged cages are placed at the ends of arms of length a. The arms rotate in a horizontal plane at angular speed ω . Assume the size of the cages is << a.
 - (a) At what angle with respect to the vertical do the cages hang?
 - (b) What is the apparent weight of a mouse of mass m?
 - (c) The mice must be fed. Food pellets are poured into a smooth walled, horizontal tube at a distance b from the axis of rotation. At what speed are the pellets moving when they reach the cages?
 - (d) FIND THE FORCE EXENTED BY THE WILEON THE BEAD.

- 3. A bead of mass m slides without friction on a circular wire hoop of radius a. The hoop is placed in a vertical plane and it is rotated at constant angular speed ω . The acceleration due to gravity is g.
 - (a) Write an expression for the Lagrangian function of this system.
 - (b) Find all positions for which the bead is in equilibrium. State the condition or conditions for which each is an equilibrium position.
 - (c) Find the frequency of small angle oscillations about one of the equilibrium positions.

