ME 185 Midterm \#1

(Oct. 5, 2010)

1. (7 pts .) Recall that the gradient of a scalar field $\phi(\mathbf{x})$ may be represented in the form $\nabla \phi=\phi_{, i} \mathbf{e}_{i}$, where $\phi_{, i}=\partial \phi / \partial x_{i}$ and x_{i} are Cartesian coordinates. Also recall that the divergence of a vector field $\mathbf{v}(\mathbf{x})$ may be represented in the form $\operatorname{div} \mathbf{v}=v_{i, i}$ where $v_{i}=\mathbf{e}_{i} \cdot \mathbf{v}$, and the curl may be represented in the form $\operatorname{curl} \mathbf{v}=e_{i j k} v_{k, j} \mathbf{e}_{i}$.

Use these facts to demonstrate that, if $\mathbf{u}=\operatorname{curl} \mathbf{v}$ and $\mathbf{w}=\operatorname{curl} \mathbf{u}$, then

$$
w_{i}=\psi_{, i}-v_{i, j j}
$$

where $\psi=\operatorname{div} \mathbf{v}$. This is the component representation of the identity

$$
\operatorname{curl}(\operatorname{curl} \mathbf{v})=\operatorname{grad}(\operatorname{div} \mathbf{v})-\Delta \mathbf{v}
$$

where $\Delta=\operatorname{div}(\operatorname{grad})$ is the Laplacian operator. [Hint: $e_{k i j} e_{k p q}=\delta_{i p} \delta_{j q}-\delta_{i q} \delta_{j p}$.]
2. (8 pts .) Let $\varphi\left(x_{1}, x_{2}\right)$ be a function of only two Cartesian coordinates in a 3D Cartesian coordinate system $\left\{x_{i}\right\}$. Thus, φ does not depend on x_{3}. Let

$$
\mathbf{v}(\mathbf{x})=\mathbf{x}+\varphi \mathbf{e}_{3}
$$

where \mathbf{x} is the 3 D position vector. (a) Show that

$$
\nabla \mathbf{v}=\mathbf{I}+\mathbf{e}_{3} \otimes \nabla_{2} \varphi
$$

where ∇_{2} is the two-dimensional gradient [i.e., $\nabla_{2} f=\left(\mathbf{I}-\mathbf{e}_{3} \otimes \mathbf{e}_{3}\right) \nabla f$, for any function $f(\mathbf{x})$. This is the projection of the 3D gradient onto the plane with unit normal $\left.\mathbf{e}_{3}\right]$. (b) Show that $\operatorname{tr}(\nabla \mathbf{v})=3$ and $\operatorname{det}(\nabla \mathbf{v})=1$. Therefore $\nabla \mathbf{v}$ is invertible. (c) Show that

$$
(\nabla \mathbf{v})^{-1}=\mathbf{I}-\mathbf{e}_{3} \otimes \nabla_{2} \varphi
$$

(d) Suppose $\varphi=g(\theta)$, where g is a given differentiable function and $\theta=\arctan \left(x_{2} / x_{1}\right)$. Show that $\nabla_{2} \varphi=r^{-1} g^{\prime}(\theta) \mathbf{e}_{\theta}$, where $r=\sqrt{x_{1}^{2}+x_{2}^{2}}$ and $\mathbf{e}_{\theta}=-\sin \theta \mathbf{e}_{1}+\cos \theta \mathbf{e}_{2}$.
3. (5 pts.) Consider a vector field $\mathbf{v}(\mathbf{x})$ defined by

$$
\mathbf{v}(\mathbf{x})=r f(r) \mathbf{e}_{\theta}
$$

where $f(r)$ is a given function (r and \mathbf{e}_{θ} are defined in $\# 2(\mathrm{~d})$ above). (a) Show that

$$
\nabla \mathbf{v}=\left[\frac{d}{d r}(r f)\right] \mathbf{e}_{\theta} \otimes \mathbf{e}_{r}-f \mathbf{e}_{r} \otimes \mathbf{e}_{\theta}
$$

where $\mathbf{e}_{r}=\cos \theta \mathbf{e}_{1}+\sin \theta \mathbf{e}_{2}$. (b) Write expressions for the symmetric, skew and deviatoric parts of $\nabla \mathbf{v}$. Specialize your results to the case $f(r)=\omega$, a constant.

