ME 185 Midterm #1

(Oct.	5,	2010)

1. (7 pts.) Recall that the gradient of a scalar field $\phi(\mathbf{x})$ may be represented in the form $\nabla \phi = \phi_{,i} \mathbf{e}_i$, where $\phi_{,i} = \partial \phi / \partial x_i$ and x_i are Cartesian coordinates. Also recall that the divergence of a vector field $\mathbf{v}(\mathbf{x})$ may be represented in the form $div\mathbf{v} = v_{i,i}$ where $v_i = \mathbf{e}_i \cdot \mathbf{v}$, and the curl may be represented in the form $curl\mathbf{v} = e_{ijk}v_{k,j}\mathbf{e}_i$.

Use these facts to demonstrate that, if $\mathbf{u} = curl \mathbf{v}$ and $\mathbf{w} = curl \mathbf{u}$, then

$$w_i = \psi_{,i} - v_{i,jj},$$

where $\psi = div\mathbf{v}$. This is the component representation of the identity

$$curl(curl\mathbf{v}) = grad(div\mathbf{v}) - \Delta\mathbf{v},$$

where $\Delta = div(grad)$ is the Laplacian operator. [Hint: $e_{kij}e_{kpq} = \delta_{ip}\delta_{jq} - \delta_{iq}\delta_{jp}$.]

2. (8 pts.) Let $\varphi(x_1, x_2)$ be a function of only *two* Cartesian coordinates in a 3D Cartesian coordinate system $\{x_i\}$. Thus, φ does not depend on x_3 . Let

$$\mathbf{v}(\mathbf{x}) = \mathbf{x} + \varphi \mathbf{e}_3,$$

where \mathbf{x} is the 3D position vector. (a) Show that

$$\nabla \mathbf{v} = \mathbf{I} + \mathbf{e}_3 \otimes \nabla_2 \varphi,$$

where ∇_2 is the two-dimensional gradient [i.e., $\nabla_2 f = (\mathbf{I} - \mathbf{e}_3 \otimes \mathbf{e}_3) \nabla f$, for any function $f(\mathbf{x})$. This is the projection of the 3D gradient onto the plane with unit normal \mathbf{e}_3]. (b) Show that $tr(\nabla \mathbf{v}) = 3$ and $det(\nabla \mathbf{v}) = 1$. Therefore $\nabla \mathbf{v}$ is invertible. (c) Show that

$$(\nabla \mathbf{v})^{-1} = \mathbf{I} - \mathbf{e}_3 \otimes \nabla_2 \varphi.$$

(d) Suppose $\varphi = g(\theta)$, where g is a given differentiable function and $\theta = \arctan(x_2/x_1)$. Show that $\nabla_2 \varphi = r^{-1} g'(\theta) \mathbf{e}_{\theta}$, where $r = \sqrt{x_1^2 + x_2^2}$ and $\mathbf{e}_{\theta} = -\sin\theta \mathbf{e}_1 + \cos\theta \mathbf{e}_2$.

3. (5 pts.) Consider a vector field $\mathbf{v}(\mathbf{x})$ defined by

$$\mathbf{v}(\mathbf{x}) = r f(r) \mathbf{e}_{\theta},$$

where f(r) is a given function (r and \mathbf{e}_{θ} are defined in $\#2(\mathbf{d})$ above). (a) Show that

$$\nabla \mathbf{v} = \left[\frac{d}{dr}(rf)\right] \mathbf{e}_{\theta} \otimes \mathbf{e}_{r} - f \mathbf{e}_{r} \otimes \mathbf{e}_{\theta},$$

where $\mathbf{e}_r = \cos \theta \mathbf{e}_1 + \sin \theta \mathbf{e}_2$. (b) Write expressions for the symmetric, skew and deviatoric parts of $\nabla \mathbf{v}$. Specialize your results to the case $f(r) = \omega$, a constant.