
Physics 137A

Lecture 2 � Spring 2014
University of California at Berkeley

Final Exam

May 16, 2014, 3-6pm, 2 LeConte
6 problems � 180minutes � 100points

Problem 1 � two spin-1
2 particles in a singlet state 10points

Consider a lab with with two experimenters: you and your favorite lab partner, studying a system of two
distinguishable spin- 1

2 particles is in a spin-singlet state – the state with total angular momentum
eigenvalue 0 given by:

|χ〉 =
1√
2

(
|↑↓〉 − |↓↑〉

)
.

You are specializing in measuring the spin components of one of the particles (S1x, S1z, and so on) while
your lab partner specializes in measuring the spin components of the other particles (S2x, S2z, and so on).

� A � What is the probability for you to measure S1z obtaining h̄
2 if your lab partner makes no

measurement?
� B � Now the experiment is repeated but this time you are measuring S1x. What is the probability you

obtain h̄
2 if your lab partner is still not doing anything?

� C � Finally, the experiment is repeated for the third time and this time your lab partner decides to
contribute: makes a measurement of S2z and obtains h̄

2 . Then you get to work. What do you expect
to be the outcome of your measurement if you measure S1z? How about if you measure S1x?

Problem 2 � clebsh-gordan coefficients 30points

Consider a spin- 1
2 particle in a state with orbital angular momentum l = 1. The goal of this problem is to

calculate the Clebsh-Gordan coefficients that allow us to construct the states of definite total angular
momentum Ĵ from the simultaneous eigenstates of spin and orbital angular momentum. Label the states in
the “old basis” (the eigenstates of L̂2, L̂z, Ŝ

2, and Ŝz) by |l ml s ms〉 and the states in the “new basis”
(eigenstates of Ĵ2 and Ĵz) by |j mj〉.

� A � Write all the states in the “new basis” in terms of states in the “old basis” and label the non-zero
coefficients. How many non-zero coefficients is there?

� B � Determine all these coefficients. For example, you can do this by starting with the state with
maximum j and mj and using lowering operators as well as orthonormality repeatedly.

� C � What is the expectation value of L̂z in the state with the lowest possible value of j and mj = j?

What is the expectation value of Ŝz in this state?

Problem 3 � fermion gas in a harmonic trap 15points

Consider a very large number N of noninteracting electrons of mass me.

� A � The electrons are confined by a one-dimensional harmonic oscillator potential V (x) = 1
2meω

2x2.
What is the value of the ground state energy? What is the value of the Fermi energy?

� B � Now the electrons are confined to a three-dimensional version of this trap by the potential
V (~r) = 1

2meω
2r2. What is the value of the Fermi energy for this system?

Problem 4 � virial theorem 15points

� A � Prove the virial theorem in one dimension, i.e. show that the expectation value of kinetic energy T
in a stationary state relates to potential energy as:

2 〈T 〉 =

〈
x
dV

dx

〉
.

� B � Show how this theorem generalizes to three dimensional space.



Problem 5 � a stationary state of the harmonic oscillator 15points

A particle is in the nth stationary state of the harmonic oscillator |n〉.

� A � Find expectation values of 〈x〉 and
〈
x2
〉
.

� B � Find expectation values of 〈p〉 and
〈
p2
〉
.

� C � Check that uncertainty principle is satisfied.
� D � Find expectation values of kinetic and potential energy and check that the virial theorem is satisfied.

Problem 6 � states and operators for a spin-1 particle 15points

Consider a spin-1 particle with the usual basis states {|1〉, |0〉, |−1〉} of eigenvectors of the Ŝz, the
z-component of spin, defined by Ŝz |m〉 = mh̄ |m〉. We can define three normalized states |x〉, |y〉, |z〉 by
Ŝx |x〉 = 0, Ŝy |y〉 = 0, and Ŝz |z〉 = 0.

� A � Express the states |x〉, |y〉, |z〉 in the basis {|1〉, |0〉, |−1〉} and then show that they are mutually
orthogonal (and therefore these three states are a good orthonormal basis in its own right.)

� B � Define an operator Q̂ = a |x〉 〈x|+ b |y〉 〈y|+ c |z〉 〈z|, with a, b, and c all different real numbers. List
eigenstates and corresponding eigenvalues of this operator.

� C � Calculate 〈1| Q̂ |−1〉 and hence show that Q̂ is not an operator of the form Q̂ = ~B · ~̂S for any

magnetic field ~B.
� D � Explain what your conclusion in part C says about the possibility of designing a non-uniform ~B for

a Stern-Gerlach experiment that would allow you to distinguishing the states |x〉, |y〉, and |z〉.

You might find these matrix representations for s = 1 spin operators (in the basis {|1〉, |0〉, |−1〉}) useful:

Sx =
√

2h̄

 0 1 0
1 0 1
0 1 0

 , Sy =
√

2h̄

 0 −i 0
i 0 −i
0 i 0

 , Sz = h̄

 1 0 0
0 0 0
0 0 −1

 .

Mathematical Formulas

Trigonometry:
sin(a± b) = sin a cos b± cos a sin b

cos(a± b) = cos a cos b∓ sin a sin b

Law of cosines:
c2 = a2 + b2 − 2ab cos θ

Gradient operator:

~∇ =
∂

∂x
x̂+

∂

∂y
ŷ +

∂

∂z
ẑ =

∂

∂r
r̂ +

1

r

∂

∂θ
θ̂ +

1

r sin θ

∂

∂φ
φ̂

Laplace operator:

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

(
∂2

∂φ2

)
Integrals: ∫

x sin(ax) dx =
1

a2
sin(ax)− x

a
cos(ax)∫

x cos(ax) dx =
1

a2
cos(ax) +

x

a
sin(ax)

Exponential integrals: ∫ ∞
0

xne−x/a dx = n! an+1



Gaussian integrals: ∫ ∞
0

x2ne−x
2/a2 dx =

√
π

(2n)!

n!

(a
2

)2n+1

∫ ∞
0

x2n+1e−x
2/a2 dx =

n!

2
a2n+2

Integration by parts: ∫ b

a

f
dg

dx
dx = −

∫ b

a

df

dx
g dx+ fg

∣∣∣∣b
a

Fundamental Equations

Schrödinger equation:

ih̄
∂Ψ

∂t
= ĤΨ

Time-independent Schrödinger equation:

Ĥψ = Eψ, Ψ = ψe−iEt/h̄

Hamiltonian operator:

Ĥ = T̂ + V̂ =
p̂2

2m
+ V = − h̄2

2m
∇2 + V

Position and momentum representations:

〈x | p〉 = 1√
2πh̄

exp( ipxh̄ ), ψ(x) = 〈x |ψ〉 , φ(p) = 〈p |φ〉 , 〈x | p̂ |ψ〉 = −ih̄ d
dxψ(x)

Momentum operator:
p̂x = −ih̄ ∂

∂x , p̂y = −ih̄ ∂
∂y , p̂z = −ih̄ ∂

∂z

Time dependence of an expectation value:

d ˆ〈Q〉
dt

=
i

h̄

〈
[Ĥ, Q̂]

〉
+

〈
∂Q̂

∂t

〉

Generalized uncertainty principle:

σAσB ≥
∣∣∣∣ 1

2i

〈
[Â, B̂]

〉∣∣∣∣
Canonical commutator:

[x̂, p̂x] = ih̄, [ŷ, p̂y] = ih̄, [ẑ, p̂z] = ih̄

Angular momentum:
[L̂x, L̂y] = ih̄L̂z, [L̂y, L̂z] = ih̄L̂x, [L̂z, L̂x] = ih̄L̂y

Raising and lowering operator for angular momentum:

L̂± = L̂x ± iL̂y, [L̂+, L̂−] = 2h̄L̂z, L̂± |l,m〉 = h̄
√
l(l + 1)−m(m± 1) |l,m± 1〉

Raising and lowering operator for harmonic oscillator:

â± = 1√
2h̄mω

(mωx̂∓ ip̂), [â−, â+] = 1, â+ |n〉 =
√
n+ 1 |n+ 1〉 , â− |n〉 =

√
n |n− 1〉

Pauli matrices for spin- 1
2 particle:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
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