
Physics H7C; Midterm 2
Tuesday, 4/8; 9 AM -10:30 AM

Write your responses below, or on extra paper if needed. Show your
work, and take care to explain what you are doing; partial credit will
be given for incomplete answers that demonstrate some conceptual
understanding. Cross out or erase parts of the problem you wish the
grader to ignore.

Problem 1: Appetizers (5 pts each)

1a) As you race to class on your bike, your tires spin at 180 RPMs
(rotations per minute). If an electron is stuck at some point on a
wheel, at what wavelength is the emitted electromagnetic radiation?

1b) Consider two monochromatic plane waves, described using
complex representation

~E1 = E0ŷei(kx−ωt) and ~E2 = E0(1 + i)ŷei(kx−ωt) (1)

where E0 is a real number. What is the ratio of the intensities of wave
2 and wave 1? What is the relative phase difference between the two
waves?

1c) An object is placed extremely far away from a single lens. For
each of two lenses at right, say whether the resulting image would be
real or virtual, and whether it would be inverted or upright. Explain
your answers in terms of the curvatures of the lenses.

Figure 1:
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Problem 2: Take a Look at Yourself (20 pts)

You visit the Lawrence Hall of Science, and stare directly
into their giant concave mirror. As you move nearer and farther from
the mirror, you find a location a distance D from the mirror vertex at
which the height of your image is exactly the same as your height.

2a) As you move around some more, you find that there are two
locations where your image height is twice your height. What are
these two distances, in terms of D?

2b) How is the distance D related to the focal length of the mirror?
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Problem 3: Fiber optic (20 pts)

A fiber optic cable of length L is submerged under the ocean. As
seen in the figure, a light ray is emitted from the left bottom corner at
an angle θ. The angle θ is chosen such that the time it takes the ray to
propagate all the way down the fiber is a maximal value, tmax.

3a) Given measurements of L and tmax, find an expression for the
index of refraction of the optical fiber material.
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Problem 4: Rainbow through the Window (20 pts)

A narrow, collimated beam of white light is incident on a glass
window at an angle θ. After passing through the glass, the beam
lands on a screen and forms a rainbow image.

4a) What is the orientation of the rainbow – that is, what color of the
rainbow is nearer the top of the screen? Explain your answer.

4b) Find an expression for the height of the rainbow image on the
screen, in terms of θ, the window thickness d, and the indices of
refraction. nr and nv, of red and violet light respectively.
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Problem 5: Springy Charge (25 pts)

A charged particle of mass m and charge q is connected on either
side by springs, with two different spring constants k1 and k2. The
particle is constrained to move only along the spring axis, and not
perpendicular to it.

A monochromatic plane wave polarized in the y-direction and mov-
ing in the x-direction (into the plane of the paper) is incident on the
particle. The plane wave has a wavelength λ0 which is much larger
than the dimensions of the system.

5a) If the spring axis is oriented along the y-axis (θ = 0◦) what is the
total power radiated (in all directions) by the particle as a function of
time?

5b) If the spring axis is oriented along the z-axis (θ = 90◦) what is
the total power radiated by the particle (in all directions) as a func-
tion of time?

5c) A light detector is placed on the y-axis, far away from the parti-
cle/spring system. How does the intensity measured by the detector
change as you vary the angle θ ? You can write this as I(θ) ∝ f (θ),
where f (θ) is the functional dependence on θ.
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extra work space



Midterm 2 Solutions

Zach Stone

April 24, 2014

1. (a) The oscillations of the emitted radiation should correspond to full
rotations of the electron around the wheel. Hence the frequency of
the electromagnetic wave is the same as the frequency of rotation of
the wheel. We have

λ =
c

f

=
3× 108 m/s× 60 s/min

180 min−1

≈ 108 m . (1)

(b) In the complex plane, where the reals lie on the x-axis, and the
imaginaries lie on the y-axis, the amplitude of wave 1 looks like a
vector (1, 0) and the amplitude of wave 2 one with (1, 1). We see
that the magnitude of E1 is 1, and that of E2 =

√
2. The intensity

of a wave goes like the electric field squared, so the ratio I2/I1 = 2.
The polar angle between them is 45◦ or π/4.

More formally, the intensity of a wave is proportional to the ampli-
tude of the wave squared

I ∝ E∗E (2)

where E∗ is the complex conjugate of the field E. Hence

I2
I1

=
E0(1 + i)E0(1− i)

E2
0

=
E2

0(1− i2)

E2
0

= 2 (3)

We find the argument (polar angle in the complex plane) of each wave
to determine the phase shift. The exponential portion of the wave is
the same in each case, so we look only at the phase of the amplitudes.
The first wave has only a real part, and hence has complex argument
0. The second wave has argument arctan 1 = π/4, hence the second
wave is shifted π/4 relative to the first.
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(c) We use the lens makers equation to determine whether each lens is
converging or diverging

1

f
= (n− 1)

(
1

R1
− 1

R2

)
(4)

Taking the object to be to infinitely far away to the left, lens 1 has
R1 = ∞ and R2 < 0. It therefore has a positive focal length and is
converging. A converging lens produces an image that’s inverted and
real. Lens 2 has R1 > 0 and R2 > 0. We can see that the absolute
value of R2 is less than R1, therefore the lens makers equation gives
us a negative focal length. This is therefore a diverging lens and
produces an image that’s right side up and imaginary.

2. (a) The transverse magnification is given by M = si/so, and we have the
mirror equation 1/si + 1/so = 1/f , so taking so = D

M =
f

f −D
= ±1

=⇒ D = 2f or 0 . (5)

We consider both ±1 is because we allow the image to be either
inverted (and real) or upright (and virtual). Here we ignore the
extraneous solution D = 0. Now considering the case where M = 2

M =
f

f −D′
= ±2

=⇒ D′ =
1

2
f or

3

2
f

=
1

4
D or

3

4
D . (6)

(b) from above, we see that f = D/2.

3. (a) If the ray takes the maximum time to traverse the cable, the angle
θ must be the smallest possible while still permitting total internal
reflection. This means θ is the critical angle, defined by sin θc =
nw/nc, where nc and nw are the indices of refraction of the cable and
of water. The geometry of the problem (and the law of reflection)
implies that the path length traveled by the ray is L/ sin θc. The
speed of the light ray in the cable is v = c/nc. Thus

tm =
L

sin θcv
=

L

sin θc(c/nc)
=

L

(nw/nc)(c/nc)
=
Ln2c
cnw

(7)
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and solving for nc
nc = (tmcnw/L)1/2 (8)

4. (a) Glass has a higher index of refraction at bluer wavelengths. The
rainbow thus appears with red at the top, and blue at the bottom,
since shorter wavelengths tend to be refracted more strongly towards
the horizontal when entering the glass. See figure.

(b) Looking at the figure, we see application of Snell’s law gives sin θ1 =
n sin θ2 and a second application shows θ3 = θ1. The vertical position
is y = y1 + y2 = d tan θ2 + r tan θ1. The difference in y between red
and violet light is then

∆y = yr − yv = d tan θ2,r − d tan θ2,v (9)

The distance to the screen r, cancels out. One could write the solu-
tion directly

∆y = d

(
tan

(
arcsin

(
1

nr
sin θ1

))
− tan

(
arcsin

(
1

nv
sin θ1

)))
(10)

But to make things more beautiful we can write

d tan θ2 =
d sin θ2
cos θ2

=
d sin θ2

(1− sin2 θ2)1/2
(11)

=
d sin θ1/n

(1− sin2 θ1/n2)1/2
=

d sin θ1

(n2 − sin2 θ1)1/2
(12)

And so the image size is

∆y = d sin θ1[(n2r − sin2 θ1)−1/2 − (n2v − sin2 θ1)−1/2] (13)
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5. (a) As in our analysis of the blue sky (from the problem set), we can
write an equation of motion of a charged particle with a harmonic
force

ms̈ = −k1s− k2s+ qE0 cos θe−iωt (14)

where s is the displacement along the spring axis. The E0 cos θ term
is the component along the spring axis of the incident electric field.

s̈ = −ω2
0s+

qE0 cos θ

m
e−iωt (15)

where ω0 =
√

(k1 + k2)/m is the resonant oscillation frequency. We
anticipate a solution s(t) = s0e

−iωt and plugging this in find

−ω2s0 = −ω2
0s0 +

qE0 cos θ

m
(16)

and so we find the motion

s(t) =
qE0 cos θ

m(ω2
0 − ω2)

e−iωt (17)

the acceleration is then

a = s̈ = −ω2 qE0 cos θ

m(ω2
0 − ω2)

cos(ωt) (18)

where we took the real part of the complex exponential. The Larmor
formula gives

P =
q4E2

0 cos2 θω4

6πε0c3m2(ω2
0 − ω2)2

cos2(ωt) (19)

For part a) the angle is θ = 0, so this simply becomes

P =
q4E2

0ω
4

6πε0c3m2(ω2
0 − ω2)2

cos2(ωt) (20)

(b) In this case, the electric field is perpendicular to the spring axis and
so doesn’t move the electron, and hence the radiated power is zero.

(c) As seen above, the electromagnetic force (and hence the acceleration)
the electron feels is proportional to cos θ where θ is the angle between
the spring axis and the electric field vector. Hence the total power
is thus proportional to cos2 θ. In addition, an oscillating particle
radiates with a sin2 θ distribution pattern. Therefore the intensity
measured along the y-axis has the functional dependence

I(θ) ∝ cos2 θ sin2 θ (21)
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