
CS61C Sample Final

1 Opening a New Branch
struct market {

char *name;
struct item *inventory; // array of items
int invSize; // size of array

};
 
struct item {

int id;
int price;

};
 
typedef struct market Market;
typedef struct item Item;
 
1) Consider the structures above which describe a Market and its inventory.  Complete the function 
copy below, which makes a complete copy of the market structure and all of the data contained 
within it.  None of the fields in the new copy should reference data in the original copy.  Feel free to 
use the following functions:
 
char *strcpy(char *dst, const char *src);
size_t strlen(const char *str);

Market* copy(Market* orig) {
    Market* result =
 
 
 
 
 
 
 
 
 
 
 
     return result;
}
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2  Thread Level Parallelism
For the following snippets of code below, Circle one of the following to indicate what issue, if any, the 
code will experience.  Then provide a short justification.  Assume the default number of threads is 
greater than 1.  Assume no thread will complete before another thread starts executing.
 
Assume arr is an int array with length len.
a)
// Set all elements in arr to 0
int i;
#pragma omp parallel for
for (i = 0; i < len; i++)

arr[i] = 0;

Sometimes incorrect Always incorrect Slower than serial Faster than serial
 
 
 
b)
// Set element i of arr to i
#pragma omp parallel
for (int i = 0; i < len; i++)

arr[i] = i;

Sometimes incorrect Always incorrect Slower than serial Faster than serial

 
 
 
 
c)
// Set arr to be an array of Fibonacci numbers.
arr[0] = 0;
arr[1] = 1;
#pragma omp parallel for
for (int i = 2; i < len; i++)

arr[i] = arr[i - 1] + arr[i - 2];

Sometimes incorrect Always incorrect Slower than serial Faster than serial
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3 Huge Pages  
High performance applications commonly find themselves bogged down by the virtual memory subsystem 
when using large data sets. One solution is for the operating system to selectively allocate larger (huge) pages 
to back the virtual memory of such applications. We will look at one possible way these huge pages could be 
implemented. For this problem, we are using a 32-bit virtual and 32-bit physical address space, and want to 
support 8MiB huge pages, with a normal page size of 4KiB.
 
To start off, we add a bit to each page table entry to indicate if it is a huge page. When this bit is set to 1, it 
means that the PPN is that of a 8MiB page in physical memory, and that this entry overrides the next 2047 
entries for address translation. We require the virtual addresses of huge pages to be 8MiB aligned, so it's only 
legal for every 2048th page table entry to be marked as huge.
 
Example page table, where fields marked X are not used in address translation.
PPN valid dirty huge
7342 1 0 0
6422 1 0 X (illegal)
1423 0 0 X (illegal)
... ... ... ...
9241 1 0 1
X (part of hugepage) X X X (illegal)
X (part of hugepage) X X X (illegal)
 
a) Fill out the number of bits needed for each field in the page table.
 

PPN:                valid:                 dirty:              huge: 
 
b) With a fully-associative 16 entry TLB, what is the maximum amount of memory normally addressable with 
just cached page entries? What does this increase to if we allow huge pages? Write your answer in IEC 
format.
 
 
 
c) List a reason why huge pages might:

speed up translation waste memory slow down translation be better for DMA
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d) Describe what hardware modifications are required to allow for huge page support. In particular, what 
additional checks are necessary during a TLB lookup?
 
 
 
 
e) Since writing a huge page to disk can take a while, it is common for operating systems to split a huge page 
into smaller pages when swapping out such a page. Implement split_hugepage(), which is given a pointer to 
the huge page's entry. You can assume that the page table is an array of entry_t's as defined below, and that 
the physical huge page can be divided up without moving it. The OS will take care of TLB invalidation after this 
function is called.
 
// definition of a page table entry
typedef struct entry {

bool valid;
bool huge;
bool dirty;
int ppn;

} entry_t;
 
void split_hugepage(entry_t *huge_ent) {

huge_ent->huge = 0; 
// your code (HINT: huge_ent + i points to the ith entry after huge_ent)

 
 
 
 
 
 
 
 
 
 }
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4 Triple Add

Above is the single-cycle MIPS datapath you all know... Ignore pipelining for this question. Your job is to 
modify the diagram to support this new MIPS instruction:

add3 rd rs rt

What this instruction does is that it adds the three number R[rs], R[rt], R[rd] and stores them back into R[rd].
 
a)    Which MIPS instruction type would be best to represent add3 and what is the register transfer language 
for the instruction (don’t forget to update the PC)?
 
 
 
 
b)    Change as little as possible in the datapath above (draw your changes right in the figure) to enable 
add3 and list all changes below. Your modification may use muxes, wires, new control signals, and an 
additional adder, but nothing else. Assume you can modify register file to have three outputs: BusA, BusB, 
and BusC where the value on BusC is specificed by rd. You may not need all boxes.

(i)  

(ii)  

(iii)  

(iv)  

 
 
 
 
 
 
c) We now want to set all the control lines appropriately. List what each signal should be: an intuitive 
name (for ALUctr, the operation, for nPC_sel a simple description of the next PC) or
{0, 1, x – don’t care}. Include any new control signals you added.

RegDst RegWr nPC_sel ExtOp ALUSrc ALUctr MemWr MemtoReg   
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d)    You are trying to sell the value of this instruction. Give a situation in one sentence where this instruction 
would be valuable (would allow you to do the task faster than classical mips).

 

 
e)    After you make these changes to the datapath, your boss tells you he now has to decrease the frequency 
of the clock for the CPU to work correctly. What did you do?
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5 Synchronous Digital Circuits
 
a) You are an intern at a massive hardware firm. Your first task is to design a “prime number checker.”
The circuit you must design with take as input an integer between 0 and 7. It will have three input bits, 
corresponding to the relevant integer. Your circuit should output 1 if the integer is prime and 0 otherwise.  
Neither zero nor 1 is prime.
 
Complete the Truth Table below. A, B and C correspond the 4’s place, 2’s place and 1’s place respectively
 

Input A Input B Input C Output X

0 0 0  

0 0 1  

0 1 0  

0 1 1  

1 0 0  

1 0 1  

1 1 0  

1 1 1  

 
b) Write the Boolean expression formed by the output in Sum-of-Products form. Reduce it to its simplest form.
 
 
 
 
 
c) Construct the circuit with the fewest gates using only AND, OR and NOT gates
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d) Consider a system that can output a value between 0-3 with the ability to increment and decrement. This 
system will have two 1-bit inputs: increment and decrement and a 2-bit output (the count). 

● If increment is high, the count should increase by one for the next cycle (wrap around if necessary). 
● If decrement is high, the count should decrease by one for the next cycle (wrap around if necessary)
● If neither is high, the system should stay at the same value
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● They will never both be high at the same time
 
Draw a state machine for this system with appropriate transitions for each input pair.
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6 Who invited these people again?
Louis Reasoner writes the following self-modifying code: 
foo:   la   $t0, modify

  sll  $a0, $a0, 11
  lw   $t1, 0($t0)
  addu $t2, $t1, $a0
  sw   $t2, 0($t0)

modify: addu $0, $0, $a1
    sw   $t1, 0($t0)
    jr   $ra
 
What happens if we call foo with $a0=15 and $a1=15? (3pt)
 
For each of the following questions, CIRCLE either a, b, c, d, or e.
Which set of inputs will permanently change the behavior of the program?  (3pt)

a) $a0=3  and $a1=3
b) $a0=5  and $a1=5
c) $a0=7  and $a1=7
d) $a0=9  and $a1=9
e) $a0=11 and $a1=11

 
Which set of inputs will always cause a bus error? (3pt)

a) $a0=7 and $a1=7
b) $a0=8 and $a1=7
c) $a0=7 and $a1=8
d) $a0=8 and $a1=8

 
Alyssa P. Hacker has figured out how foo works and wants to use the program for an unintended 
purpose – copying $t3 to $t4. Which set of inputs should she choose? (She could have just executed
addu $t4 $0 $t3 to achieve the same effect). (3pt)

a) $a0=0x000000CB and $a1=0x000000CB
b) $a0=0x000000CC and $a1=0x000000CC
c) $a0=0x000000CD and $a1=0x000000CD
d) $a0=0x000000DB and $a1=0x000000DB
e) $a0=0x000000DC and $a1=0x000000D
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