Login: cs6lc-

CS61C Summer 2013 Final Exam

Your Name: SID:

Your TA (Circle): Albert Kevin Justin Shaun Jeffrey

Name of person to your LEFT:

Sagar

Name of person to your RIGHT:

This exam is worth 90 points and will count for 26% of your course grade.

The exam contains 7 questions on 14 numbered pages. Put all answers in the spaces

provided. Some pages are intentionally left blank for scratch space.

Question 0: You will receive 1 point for properly filling out this page as well your

login on every page of the exam.

Question Points (Minutes) Score

0 1(0)
1 23 (48)
2 9 (20)
3 15 (30)
4 12 (20)
5 17 (36)
6 13 (26)

Total 90 (180)

All the work is my own. | had no prior knowledge of the exam contents nor will | share the

contents with others in CS61C who have not taken it yet.

Signature:

Question 1: Potpourri— Hard to Spell, Nice to Smell (23 points, 48 minutes)

a) MOESI on Through This Problem

Our computer has two cores, each with a 32B direct-mapped cache with 16B blocks using write-back
and write-allocate policies. The MOESI protocol is implemented with invalidation of other caches on
write, and the caches are empty at the beginning of the program. arr is a block-aligned array of ints.

Fill out the status of the blocks in each cache. Indicate any memory locations that are not up-to-date as
well. The first two rows have been done for you, using the abbreviations “C” for cache and “B” for block.

After Operation Core 1S State Core 2 $ State Out-of-date Mem Locations
BO: Exclusive B?: Invalid
C1: read from arr[0] B?: Invalid B?: Invalid none
BO: Exclusive B1: Modified
wri arr[5
C2:write toarr[5] B?: Invalid B?: Invalid [5]

C2: write to arr[2]

Cl:read from arr[3]

b) Answer the following questions based on the FSM circuit shown below:

i Draw the FSM state diagram (assume the initial state shown) in the space below:

Out
State

D Q

cLxfurf- 1"

ii. Lettsetup = thola = 50 psand txor = 20 ps. If we run this FSM on a 4-GHz processor and the
input arrives tyq1q after the clock triggers, what are the maximum and minimum t¢jix_¢o—q for
the register to ensure proper functionality?

Min: Max:

Login: cs6lc-

c) Implement the following truth table functions using only NOR gates (fewer is better)

A|B|FL|F2|F3 F1:
olo|1]0]1 2.
ol1]1]1]o0
1lolo|1]1 3.
1010011

d) Hamm It Up
i. What's the correct data word given the following SEC Hamming code: 01010007

You are analyzing a new error detection/correction scheme for 4 bits of data (d;d,ds;ds), where you store
two parity bits (d1d,dsdsp1p2) with p; = xor(d1,d,,ds,ds) and p, = xor(dy,d5,ds,da,p1).
For example, if the data bits were 1011, the code word would be 101110.

ii. What fraction of all code words is valid?
iii. What is the minimum Hamming distance between valid code words?

iv. What is the maximum number of errors we can detect?

e) There’s Loot to be Had... Let’s RAID It!
You are using RAID with 8 equally-sized disks and block-striping in 32-bit chunks.
i. Which RAID level(s) can you not use?
ii. With which viable RAID level(s) can you to store the most data?
iii. With which viable RAID level(s) can you store the least data?

iv. If using RAID 5, how many disk reads and writes are there for writing 8 bytes of data within the
same stripe?

Rd: Wr:

f) Solve for the maximum controller overhead to meet the following specifications:

We need disk latency under 18 ms while reading 800 B of data. The hard drive spins at 6000 rev/min
with a seek time of 2.5 ms and transfer rate of 80 KB/s (S| prefix). Don’t forget units!

PAGE INTENTIONALLY LEFT BLANK
(Any work on this page will not be graded)

Login: cs6lc-

Question 2: MIPStifying (9 points, 20 minutes)

Answer the questions below about the following MIPS function. Answer each part separately, assuming
each time that mystery() has not been called yet.

mystery:
1 andi $a0, $a0, 3
2 ori $t0, $0, 1
3 sl $t0, $tO, 6
4 Lbll: beq $a0, $0, Lbl2
5 sl $t0, $t0, 5
6 addi $a0, %$a0, -1
7 j Lbl1
8 Lbl2: la $s0, Lbl3
8 Iw $s1, 0($s0)
9 add $sl1, $s1, $tO
10 sw $s1, 0($s0)

11 Lbl3: add $v0, $0, %0
12 jr $ra

a) Which instruction (number) gets modified in the above function?
b) Write an equivalent arithmetic (not logical) C expression to instruction 1. a0 =

c) Which instruction field gets modified when mystery is called with $a0 = 3?

d) How many times can mystery(2) be called before the behavior of mystery() changes?

e) How many times can mystery(0) be called before the behavior of mystery() changes?

f) A program calls mystery with the following sequence of arguments: 0, 1, 2, 3, 4, 5.
What MIPS instruction gets stored in memory?

Question 3: To Be Without Parallel... Means You’re Slow (15 points, 30 minutes)
a) SIMD and OpenMP

Four CEOs are playing the board game Monopoly, where the object of the game is to own properties
and gain profits from them. You are in charge of keeping track of the CEOs’ finances and wish to
parallelize this task. All memory accesses are valid. Assume sizeof(int) = 4.

int balance[4]; // global array of balances
Property props[NUMPROPS]; // global array of properties

A property is defined by the following struct:

typedef struct {
int owner; // the index of the CEO who owns this property
int profit; // collectable money

} Property;

Every round we must give each CEO the amount of money that he has earned from each of his
properties. To do this, we add the property’s profit into the CEQ’s balance and then set the profit to
zero for the next round using the following function:

void collect _profits(Q) {
for(int 1 = 0; 1 < NUMPROPS; i++) {

balance[props[i]-owner] += props[i].-profit;
props[i].profit = 0;

}

}

i. Perform a 2-fold unrolling of the loop by filling in the blank spaces above. You may edit the looping
conditions if you need to (cross out and write in changes). Assume NUMPROPS is a multiple of 2.

ii. _mm_loadu_si128 loads 128-bits of data into a vector. If we wish to use three of these
instructions to load from props|[] every iteration of our loop, how many fold must we unroll the
original loop? Answer n if performing an n-fold unrolling.

iii. Youslap a#pragma omp parallel for statementon the original for loop. Circle the effect on
execution below and provide a one phrase/sentence explanation. No credit without explanation.

Correct; Correct; Almost always Segfault
Faster Slower Incorrect
Explanation:

iv. Now you additionally add a #pragma omp critical statement around all writes to balance[].
What is the new effect on execution? No credit without explanation.

Correct; Correct; Almost always

Faster Slower Incorrect Segfault

Explanation:

Login: cs6lc-

b) MapReduce

Suppose that given a large social network dataset, you wish to generate recommendations for yourself
by looking at the “Likes” of your friends. You wish to exclude your own likes so that the
recommendations are useful. Unfortunately, your input dataset consists of everyone on the social
network, not just your friends. Assume that you have access to a global person_id for yourself,
YOUR__ID.

Conceptually, you can think of the map as filtering the overall dataset to just you and your friends, while
the reduce will filter out common “Likes” between you and your friends.

You have access to the following special methods:

listl = removeAll(listl, list2) //listlnow contains only elements thatwerein listl
// but notin list2

list_ret = sortOnvValuesl(list_arg) //assuming each element in listis atuple, returns
// copy of list_arg sorted on the 1st element of the tuple

Feel free to access members of lists and tuples using array syntax.

i. The input to the map function is (key = person_id, value = (friend_list, likes)). How many times will a
friendship between two people show up in the input data?

ii. Fill in the MapReduce functions below using Java-like pseudocode:

map(key, value){
friend_list = value[0O];
likes = value[l];
person_id = key;
for (friend: friend list) {
if (person_id == YOUR_ID) {

emit ((YOUR_ID,). (0, likes));
} else if () {
emit ((,), (1, likes));
}
}
}
reduce(key, values){
emitvValues = .
emit(key, removeAll(,));

}

Your output will be of the form:

key = (friendpair;), value = recommendations

PAGE INTENTIONALLY LEFT BLANK
(Any work on this page will not be graded)

Login: cs6lc-

Question 4: Off the Beaten Datapath (12 points, 20 minutes)

Add the instruction stones (store one smaller) to the single cycle datapath, which stores a 1 at the address of
the smaller value between two specified registers. Ignore pipelining.

Instruction<31:0>

Instruction AA A A >
Fetch Unit = |12 |7 =
A F= v
VAR AR
That is, Rt Rs Rd Imml6
Zero
MemWr MemtoReg
unsigned X, Vy;
char *p = NULL; 32 32-bit 32 S)
if ’(f)((pix))/)= » Registers b;l;lgs/ 32 l l
else " 32
*(p+ty) = 1; - #—p| WrEn Adr 1
sl 1/ Dataln 3 J
imm1 — i % f - MData
e) Memory
Y ALUSre o=
|
ExtOp

a) Write out the assembly syntax and RTL for this instruction. Don’t forget about the PC!
Syntax: RTL:

b) Change as little as possible in the datapath above (draw your changes on the figure) to enable stones.
List all your changes below (be concise!). Your modification may use MUXes (define what select bits refer

to what inputs), wires, constants, and up to one new control signal, but nothing else. You may not need all
of the provided boxes. You cannot modify the ALU (there is no min operation).

(i)

(ii)

(iii)

(iv)

C) We now want to set all the control lines appropriately. List what each signal should be, using 0, 1, X, or an
intuitive name. Include any new control signals you added.

RegDst | RegWr [nPC_sel| ExtOp | ALUSrc | ALUctr | MemWr |MemtoReg

Question 5: Tread Carefully, Thread Carefully (17 points, 36 minutes)

Examine the function prototype and MIPS implementation below.

// sets *value = (*value) * 2”™pow using shifting instructions
int multMemPow2(int *value, unsigned int pow);
multMemPow?2 :
lw $v0, 0(%a0) # load value
loop: beq $al, $0, exit # exit condition
sl $v0, $v0, 1 # multiply by 2
addi $al, $al, -1 # decrement counter
sw $v0, 0($a0) # store result

loop

N o o~ WwDN P
hl

exit: jr $ra

We are using a 5-stage MIPS pipelined datapath with separate IS and DS that can read and write to
registers in a single cycle. Assume no other optimizations (no forwarding, no branch prediction, etc.).
The default behavior is to stall when necessary. Branch checking is done during the Execute stage.

For parts (a)-(c), let pow=1. When we ask for clock cycles to execute multMemPow2, we mean from the
instruction fetch of Iw up to and including the write back of jr.

a) How many instructions are executed in multMemPow2?

b) How many clock cycles does it take to execute mul tMemPow2?

(we will assign partial credit based on table on opposite page)

c) Consider the following optimizations separately. How many FEWER cycles are taken for the addition
of each optimization?

i. Forwarding

ii. Branch Prediction of always taken

d) Suppose we introduce only jump delay slots and want to move a loop instruction into the new jump
delay slot after instruction 6 (J loop). For the following candidate instructions, answer C for
“changes behavior,” S for “causes additional stall(s),” or G for “good choice”:

Instr 3: Instr 4: Instr 5:

10

Login: cs6lc-

For the following questions, assume we are executing the multMemPow2 simultaneously on TWO
processors in the same shared-memory machine with *value=1 and pow=2.

e) List ALL possible values of *value after execution:

Stanley Stanfurd thinks he can fix the data race problem by replacing the Iw with 'l and sw with sc.
Assume sc compares against the value from the last 11 call.

f) List ALL possible values of *value after execution of this new version:

You may find the following space useful for scratch work; we will check for assigning partial credit:

11

PAGE INTENTIONALLY LEFT BLANK
(Any work on this page will not be graded)

12

Login: cs6lc-

Question 6: /t’s Virtual Insanity! (13 points, 26 minutes)
Our 32-bit uniprocessor machine has 1 GiB of RAM with 1 KiB pages, a fully-associative TLB that holds 8
entries and uses LRU, and a direct-mapped, write-back data cache with 32 B blocks and 32 slots. The

instruction cache is 256 B and fully-associative with 32 B blocks.

a) Whatis the maximum number of valid entries in the page table for a single process? Answer in IEC.

b) What is the TLB Reach of our system?

Examine the following function. Assume the entire program’s code takes the entirety of one page and
sizeof(int)=sizeof(int *)=4.
void addConst(int *ptr, char c) {
for(int 1 = 0; 1; i+=4)
ptr[i] += c;
¥

c) If ptr[] lives in disk and ptr[0] is page-aligned, what is the TLB hit rate for data accesses only?

d) If ptr[] lives in disk and ptr[0] is page-alighed, what fraction of DS misses are also TLB misses?

e) If ptr[0] isin physical memory, what is the minimum value of i that could cause a page fault?

f) If ptr[0] is in physical memory, what is the minimum value of i that could cause a protection
fault?

g) If ptr[0] isin physical memory, what is the maximum value of i1 that causes the first cache miss in
the loop?

h) If ptr[0] is in physical memory, what is the maximum value of i that causes the first TLB miss in the
loop? You may leave your answer as a product.

13

BACK OF EXAM
(Any work on this page will not be graded)

14

