. .

Math 185-S2 Fall 2008 Final Exam

Please write your name on each blue-book, and the number of blue-books used, if you use more than one. You have until 8:00pm. Write all proofs in *full sentences* and show your work whenever possible. There are four problems, skip ahead if you get stuck. Good luck!

(1) (24 pts)

- (a) Define the notion of holomorphic function. Define the notion of integral of a continuous function along a smooth curve. State Goursat's Theorem.
- (b) Define the notion of simply connected domain. State Cauchy's Theorem for a simply connected domain. Define the notion of Principal part of a function at a pole.
- (c) State Riemann's Theorem on Removable Singularities. Define the notion of meromorphic function. State the Open Mapping Theorem.
- (2) (24 pts) Label each of the following statements as True or False. Justify your answers.
 - (a) The set of all functions $f \in H(\mathbb{C})$ such that $|f(z)| \leq |\text{Im}(z)|$ for all $z \in \mathbb{C}$, is infinite.
 - (b) All the roots of the equation $2z^5 6z^2 + z + 1 = 0$ lie in the disc $D_2(0)$.
 - (c) Let $\Omega \subset \mathbb{C}$ be open and let $z_0 \in \Omega$. Then a function $f \in H(\Omega \setminus \{z_0\})$ has a pole at z_0 if and only if $\operatorname{Res}_{z_0} f(z) \neq 0$.
 - (d) If $\mathbb{D}^* := \mathbb{D} \setminus \{0\}$, then every conformal map $\mathbb{D}^* \to \mathbb{D}^*$ is a rotation.
- (3) (26 pts)

Let f be an entire function such that $|f(z^2)| \leq 2|f(z)|$ for all $z \in \mathbb{C}$, and let $M := \sup_{z \in \partial D_2(0)} |f(z)|$.

- (a) Use induction to show that $|f(z^{2^n})| \leq 2^n |f(z)|$.
- (b) Use part a) to show that if $|w| = 2^{2^n}$, then $|f(w)| \le 2^n M$.
- (c) Use Cauchy's Inequalities to show that for each integer $m \ge 1$, $|f^{(m)}(0)| \le M(2^{n-2^n})$.
- (d) Conclude that f is a constant function.
- (4) (26 pts)

Compute the following integrals, carefully justifying each step. (*Hint*: For part a), integrate along a circle. For part b), integrate along a rectangle in the upper half plane).

(a)

$$\int_0^{2\pi} \frac{d\theta}{1 - 2a\cos\theta + a^2} \,, \qquad |a| < 1 \,.$$

 $\int_{-\infty}^\infty rac{\cos(tx)}{\cosh(x)} dx\,,\qquad t>0\,.$

 $\int_0^\pi (\sin\theta)^{2n} d\theta\,.$

(c) (EXTRA CREDIT, 10 pts) For each positive integer n, compute

(b)