
EECS 70 Discrete Mathematics and Probability Theory
Spring 2014 Anant Sahai Midterm 2

Exam location: 1 Pimentel, back half: SIDs with second-to-last digit 1 or 3

PRINT your student ID:

PRINT AND SIGN your name: ,
(last) (first) (signature)

PRINT your Unix account login: cs70-

PRINT your discussion section and GSI (the one you attend):

Name of the person to your left:

Name of the person to your right:

Name of someone in front of you:

Name of someone behind you:

Section 0: Pre-exam questions (3points)
1. What is your favorite song? (1 pt)

2. Describe a sense of accomplishment that you have felt and what prompted it. (2pts)

Do not turn this page until the proctor tells you to do so.

EECS 70, Spring 2014, Midterm 2 1



PRINT your name and student ID:

Section 1: Straightforward questions (50 points)
You must show work to get credit. You get two drops: do 5 out of the following 7 questions (we will grade all
7 and keep only the 5 best scores). However, there will be essentially no partial credit given in this section.
Students who get all 7 questions correct will receive some bonus points.

3. Interpolate (10 points)

Prof. Sahai decides to share his favorite Pokémon among six of the GSIs, but to keep it a secret unless
enough GSIs come together. Each potential favorite Pokémon is given a number (Charizard=0, Wartortle=1,
Pidgeot=2, Ninetales=3, Arcanine=4, Scyther=5, Jolteon=6) and the favorite is hidden as the constant term
(i.e. as usual, the secret is in P(0)) in a polynomial, P(x), of degree d ≤ 4 using GF(7). You manage to
acquire the following five points by attending different GSI office hours: (1,0),(2,6),(3,0),(4,0),(6,0).
Use Lagrange Interpolation to find out the secret (the Prof’s favorite Pokémon).

Solution:

P(x) = y1∆1(x)+ y2∆2(x)+ y3∆3(x)+ y4∆4(x)+ y6∆6(x)

= 0 ·∆1(x)+6 ·∆2(x)+0 ·∆3(x)+0 ·∆4(x)+0 ·∆6(x)

= 6 ·∆2(x)

= 6 · (x−1)(x−3)(x−4)(x−6)
(2−1)(2−3)(2−4)(2−6)

= 6 · (x−1)(x−3)(x−4)(x−6t)
(1)(−1)(−2)(−4)

mod 7

P(0) = 6 · (0−1)(0−3)(0−4)(0−6)
(1)(−1)(−2)(−4)

= 6 · (−1)(−3)(−4)(−6)
(1)(−1)(−2)(−4)

= 6 · (−3)
(−2)

= 9 = 2 mod 7

The professor’s favorite Pokemon is Pidgeot, aka BIRD JESUS.

EECS 70, Spring 2014, Midterm 2 2



4. Compute (10 points)

Find 300300 mod 35.

Solution: I.
The extension of Fermat’s Little Theorem says that if p and q are two distinct primes both bigger than 2,
then for any non-zero a mod pq we have

a(p−1)(q−1) ≡ 1 mod pq

In our case p = 5 and q = 7, so we have that a24 = 1 mod 35 for any non-zero a mod pq. Therefore

300300 = (30024)12 ·30012

= 112 ·2012

= (400)6

= 156

= (225)3

= 153

= 225 ·15

= 15 ·15

= 15 mod 35

Solution: II.

300300 = 0300 = 0 mod 5

and

300300 = 20300 = (−1)300 = 1 mod 7

We are looking for some number mod 35 that is 0 mod 5 and 1 mod 7. We try 5, 10, 15... ah, 15 works.
So 300300 = 15 mod 35.

EECS 70, Spring 2014, Midterm 2 3



PRINT your name and student ID:

5. Argue (10 points)

In RSA, if Alice wants to send a confidential message to Bob, she uses Bob’s public key to encode it. Then
Bob uses his private key to decode the message.

Suppose that Bob chose N = 77.

And then Bob chose e = 3 so his public key is (3,77).

And then Bob chose d = 26 so his private key is (26,77).

Will this work for encoding and decoding messages? If not, where did Bob first go wrong in the above
sequence of steps and what is the consequence of that error. If it does work, then show that it works.

Solution:
e should be co-prime to (p−1)(q−1).
e = 3 is not co-prime to (7−1)(11−1) = 60, so this is incorrect, since therefore e does not have an inverse
mod 60.

EECS 70, Spring 2014, Midterm 2 4



6. Prove (10 points)

Prove the following statement:

If two degree d ≤ n− 1 polynomials P(x) and Q(x) agree at n distinct xs (i.e. For x1,x2, . . . ,xn distinct,
P(xi) = Q(xi)), then they are the same function everywhere else too.

Solution: I.
By property 2 of polynomials, given d +1 points, there exists a unique polynomial of degree at most d that
goes through those points. In this problem, we are given n points and two polynomials of degree at most
n−1. So by uniqueness, polynomials P(x) and Q(x) are the same.

Solution: II.
Let

R(x) = P(x)−Q(x)

Note that because P(x) and Q(x) are of degree at most n−1, the degree of R(x) is at most n−1. However,
R(x) has n roots, because for x1,x2, . . . ,xn, R(xi) = P(xi)−Q(x1) = 0. By property 1, a non-zero d degree
polynomial has at most d roots. Therefore, the only way for R(x) to have n roots is if R(x) = 0 for all x. This
gives P(x)−Q(x) = 0, or P(x) = Q(x).

EECS 70, Spring 2014, Midterm 2 5



PRINT your name and student ID:

7. Recognize (10 points)

a. I have a large number of biased coins that tend to come up heads 80% of the time, and tails the other
20%. A trial consists of my flipping k such coins, and an experiment consists of 1000 such trials. I
do 3 such experiments, with k being 100, 1000, and 10000 respectively. For each experiment, I plot a
histogram of the number of heads in each trial, minus 0.8k. My horizontal axis is the same for all 3
experiments. Which histogram below corresponds to which value of k?

Solution: The intuition for this question comes from the virtual lab in Homework 7, problem 1(e)
and Discussion 8A problem 1(h). As you probably discovered, the larger the value of k, the wider
the distribution becomes. Why is this the case? Let’s take smaller numbers to imagine what would
happen. Let’s say you perform only one trial, what would your distribution look like? You’d expect
the histogram to be very narrow – simply because there’s really only two options: either 0 heads or 1
head. What if you instead have 10 trials? There are many more possibilities for how many heads you
will observe, with some values more likely than others.
Thus, the answer is: A: 100, B: 1000, and C: 10000

EECS 70, Spring 2014, Midterm 2 6



b. I do the same experiment as above, but now I plot histograms of the fraction of heads (minus 0.8) from
each trial. Now which histogram below corresponds to which value of k?

Solution: The intuition for this question comes from the virtual lab in Homework 7, problem 1(g).
As you probably discovered, the larger the value of k, the narrower the distribution becomes. Let’s go
back to the case we had before, with 1 flip vs. 10 flips. The chance of flipping 100% heads (or, in
other words, flipping heads once), is relatively high at 80% for our biased coin. But what if we had
more flips? The chance of getting either of the extremes for the percentage of heads decreases, and you
would probably have more trials when doing 10 flips where about 80% of your flips result in heads.
Alternatively, consider the following equation as presented in Note 9, where n denotes the number of
flips, ε denotes the error (our deviation from the true proportion of flips we expect to be heads), and δ

denotes our confidence level:

n =
1

4ε2δ

If we fix the confidence level, we have the following relationship:

n ∝
1
ε2

From this, as we increase the number of flips, we expect the error to decrease, which corresponds to
the narrower histogram observed here.
Thus, the answer is: A: 100, B: 1000, and C: 10000

EECS 70, Spring 2014, Midterm 2 7



c. My friend gives me 3 bags full of biased coins: coins in these bags come up heads 40%, 50%, and
60% of the time respectively. Suppose for each q in 0 ≤ q ≤ 1, I record the fraction f (q) of trials in
which I get at most q fraction of heads when I flip 100 coins drawn from one of these bags. If I plot q
(x axis) vs f (q) (y axis), which curve below corresponds to which bag?

Solution: This question is effectively asking for you to compare the cliff-face shapes from the virtual
labs in the homework. Intuitively, you would expect that the higher the coin’s probability of coming
up heads p is, the more heads you would expect to see when you flip 100 of them. The curves on the
graph are plotting the likelihood that you will see a maximum of q heads as a percentage of trials. This
is equivalent to summing up the histogram bars for any value up to q heads in the histograms above.
Because we expect more heads with higher p, f (q) would be lower for small values of q.
Thus, the answer is: A: 40%, B: 50%, and C: 60%

EECS 70, Spring 2014, Midterm 2 8



PRINT your name and student ID:

8. Derive (10 points)

You would like to send a message of length n > 0 over a lossy channel that drops (erases) packets. If up to
a fraction 1

4 of the total number of packets you send get erased, how many extra packets do you need to
send (as a function of n)?

Solution: We will send n+ k packets, of which we want at least n to go through. We know that at least
3
4 (n+ k) packets will make it. Thus,

3
4
(n+ k)≥ n

n+ k ≥ 4
3

n

k ≥ 1
3

n

EECS 70, Spring 2014, Midterm 2 9



9. Solve . . . (10 points)

Alice wants to send Bob a message of length 2 in GF(7) over a noisy channel. She knows that at most 1
character will get corrupted when she sends her message. So, she pads her message with 2 extra characters
before sending it. (Using standard interpolation-based 0-indexed Reed Solomon codes.)

This is what Bob receives: A A E G

What was Alice trying to tell him?

Note: Here, assume that letters correspond to numbers as follows:

A = 0
B = 1
C = 2
D = 3
E = 4
F = 5
G = 6

Solution: I.
The four points are (0,0), (1,0), (2,4), (3,6). Let Q(x) = ax2 +bx+ c, and E(x) = x− e. This gives the four
equations:

c = 0(0− e) ⇒ c = 0

a+b = 0(1− e) ⇒ b =−a

4a−2a = 4(2− e) ⇒ 2a = 8−4e

9a−3a = 6(3− e) ⇒ 6a = 18−6e

You get a = 2, b =−2 and e = 1. This gives Q(x) = 2x2−2x and E(x) = (x−1). The actual polynomial is
P(x) = 2x, plugging in x = 1, we get that the message was AC .

Solution: II.
Bob receives (0,0,4,6). Since Alice’s message is length 2, we know that she used a polynomial of degree
2− 1 = 1, i.e. a line. So, we are looking for a line that passes through at least three of the four points
(0,0),(1,0),(2,4),(3,6). This line is clearly y = 2x by inspection (draw the points to see it more clearly).
So the original codeword was (0,2,4,6) and the original message was “AC”.

EECS 70, Spring 2014, Midterm 2 10



PRINT your name and student ID:

Section 2: True/False (30 points)
For the questions in this section, determine whether the statement is true or false. If true, prove the statement
is true. If false, provide a counterexample demonstrating that it is false.

10. Sums (15 points)

Suppose that n ≥ 1 is a positive integer, x1,x2, . . . ,xn are also nonzero positive integers, and p is a prime.
Then

(x1 + x2 + · · ·+ xn)
p = xp

1 + xp
2 + · · ·+ xp

n (mod p).

Mark one: T RUE or FALSE.

Solution: By FLT, if a 6= 0, then ap−1 ≡ 1 mod p, i.e.

ap ≡ a mod p

And if a = 0,

ap ≡ 0p = 0 = a mod p

So for all a, ap ≡ a mod p.

Therefore,

(x1 + x2 + ...+ xn)
p

=(x1 + x2 + ...+ xn)

=x1 + x2 + ...+ xn

=xp
1 + xp

2 + ...+ xp
n mod p

EECS 70, Spring 2014, Midterm 2 11



PRINT your name and student ID:

11. Distance (15 points)

Let n≥ 1 be a positive integer. Let r ≥ 1 be a positive integer. Consider a polynomial based code in which
n character messages are encoded into polynomials of degree less than or equal to n− 1. The codewords
are generated by evaluating these polynomials at n+ r distinct points (assume the underlying finite field has
more than n+ r elements).

Then any two codewords corresponding to different messages must differ in at least r+2 places.

Mark one: TRUE or FALSE .

Solution: Suppose n = 1 and r = 1. Then the codewords are of length 1+1 = 2. The statement claims that
any two codewords corresponding to different messages must differ in r+ 2 = 1+ 2 = 3 different places,
which is clearly impossible (how can AB and DE differ in 3 places?).

EECS 70, Spring 2014, Midterm 2 12



PRINT your name and student ID:

Section 3: Free-form Problems (45 points)
12. You knew this was coming. . . (20 points)

As you know from homework, we can mod polynomials themselves. For this problem, consider formal
polynomials (i.e. a degree at most d formal polynomial is something that can be written ∑

d
i=0 aixi) with

coefficients in GF(2) (i.e. the ai are 0 or 1 with usual binary math).

(So, for example, x2 +x is the remainder of poly-long-dividing x4 by x3 +x+1. Meanwhile, the quotient of
the same division is just x. This is because x4 = x(x3 + x+1)+(x2 + x) when all arithmetic on coefficients
is performed mod 2. )

Compute the multiplicative inverse of the formal polynomial x+ 1 in mod x3 + x+ 1. That is, give a
formal polynomial P(x) so that P(x)(x+1) mod (x3 + x+1) = 1.

(e.g. The multiplicative inverse of x is x2 +1 because x(x2 +1) mod (x3 + x+1) = 1.)

Solution:

Perform the EGCD algorithm for polynomials. Note that all coefficients are in mod 2, so for example,
−2x = 0x.

x y d a b expression
x+1 x3 + x+1 1 −x2− x 1 (−x2− x)(x+1)+1(x3 + x+1) = 1
x+1 x3 + x+1− (x3 + x2)− (x2 + x1) =−2x2 +1 = 1 1 0 1 0 · (x+1)+1 ·1 = 1

0 1 1 0 1 0 ·0+1 ·1 = 1

Now (−x2− x)(x+1)+1(x3 + x+1) = 1, which means

(−x2− x)(x+1)+1(x3 + x+1)≡ 1 mod x3 + x+1

(−x2− x)(x+1)≡ 1 mod x3 + x+1

(x+1)−1 ≡ (−x2− x)≡ x2 + x mod x3 + x+1

So the multiplicative inverse is x2 + x.

EECS 70, Spring 2014, Midterm 2 13



PRINT your name and student ID:

13. Magic Command (25 points)

You are a young technomage (one who uses technology to create the impression of magic) who has been
asked to help some people on a planet with a fragile new peace treaty. They have a master computer that
is connected to a doomsday device capable of blowing up the planet if given the publicly-known command
“Magic computer, please blow up the world now.” (For the purposes of this problem, feel free to think of
this as being a publicly-known magic number like 42).

The problem is that the computer has no security on it. It just accepts plain text commands.

a. (10 pts) You have been asked to add some security to the system to prevent unauthorized use. You can remove
the keyboard, add a tamper-proof-decryption module, and force all keyboard input to go through the
decryption module before it goes to the computer. But anyone can walk up to the decryption module to
study it because it is in the public square. Please show how you would design such a public module
that transforms inputs before feeding them into the computer. This module should effectively
make the magic number that blows up the world into something secret.
You can use modulo math operations as you see fit. (You don’t have to reprove anything you have seen
in lecture or notes.)
Solution:
An important aspect is to understand what it means to be able to study the module. This means that
everyone knows exactly how it works; they can see what is inside it. Hiding information inside is not
viable so password protection schemes will not work (as you need to store the password inside it).
Solutions assuming that tamper-proof meant that you cannot gain (read-only) access to the module did
not get full credit.
That said, the scheme basically requires secret information which is not stored in the computer to be
given only to authorized individuals.

Method 1:
Construct an RSA public and private keypair, (N,e) and (N,d). Let 42 be the message. The module
will take an input x and feed xe mod N to the computer. Then, the new secret is s = 42d mod N.
Clearly, if this is fed to the module, (42d)e ≡ 42de ≡ 42 mod N will be fed to the computer and the
world will explode as desired. Any other input will not have the same effect, and computing s without
the private key d is difficult.
Method 2:
Another solution is to simply require the user to input d. The computer stores 42e in it (which everyone
knows anyway). Then, the computer takes an input t and performs (42e)t ≡ (42et) mod N, and the
rest proceeds as before.
Method 3:
Another is an encrypted version of a password protection scheme. Every authorized individual is given
a password p (could be the same or different for everyone), but the encrypted version of the password
(i.e. pe mod N) is stored in the module. An authorized user enters p to gain access to the system.
What the module does is: it checks whether the stored value of pe matches the encryption of the
entered password. If it does, then the individual has access.

EECS 70, Spring 2014, Midterm 2 14



PRINT your name and student ID:

b. (15 pts) The people on this planet are divided into two factions: the blues and the golds. Within each color
group, there are 4 families. They have agreed on the following behavior:
If at least 2 blue families and at least 2 gold families come together, they should be able to give a valid
command to the master computer. In addition, if all the blues agree or all the golds agree, then they
should also be able to give a valid command to the master computer. But no other grouping should be
able to do it. (e.g. 3 blues and 1 gold should not be able to give a command.)
Design a scheme and argue why it works as intended. You can use modulo math operations as you
see fit, as well as give pieces of information secretly to families. (You don’t have to reprove anything
you have seen in lecture or notes.)
Solution: Generally, the most familiar way to do this was a heirarchical secret sharing scheme, with
two parts. One scheme to ensure that 4 families from the same color together could unlock the secret,
and one to ensure that 2 families from one color and 2 from another could do it, with both secure
against other combinations.
For 4 families of same color: Generate two degree-3 polynomials P(x) and Q(x) over GF(p) for
some large prime p, such that P(0) = Q(0) = s, where s is the secret we want to hide. Give each
blue family a point on P(x), say P(1),P(2),P(3),P(4), and give each gold family a point on Q(x), say
Q(1),Q(2),Q(3),Q(4), making sure not to give out the secret.
For 2 families of each color: Generate three degree-1 polynomials B(x), G(x) and R(x), where
R(1) = B(0) and R(2) = G(0) and the families are told this. Furthermore, set R(0) = P(0). Give
each blue family a point on B(x), say B(1),B(2),B(3),B(4), and each gold family a point on G(x), say
G(1),G(2),G(3),G(4).
Justification: If 4 families from either faction get together, they can combine their points and interpo-
late to get P(x), since from class n+1 points completely determine a degree n polynomial, so 4 points
will suffice for the degree-3 P(x). However, any fewer than 4 families will not be able to interpolate
P(x), as fewer than 4 points are insufficient to determine a degree-3 polynomial, and will in fact gain
no information about the secret, again a fact from discussion.
If 2 families from each faction get together, the blue families can combine their points on B(x) to figure
out B(0), and the gold families can figure out G(0). From this, they can figure out R(0), since these
two points on R(x) give them enough information, hence they can get the secret. However, if there is
only one family from either faction (or 0, for that matter), they will not be able to figure out B(0) or
G(0), since 1 point is insufficient to determine a degree-1 poly, and hence will not get enough points
to figure out R(0).
By the above arguments, you need at least 4 families from 1 faction to get the secret from the first
scheme and at least 2 and 2 families to get it from the second scheme, hence no combination that does
not lie in one of these cases (i.e. 3 and 1) works.
Common mistakes were not justifying why the scheme prevents 3 blues and 1 gold from accessing the
secret, which came down to some acknowledgement that you need n+1 points to determine a degree
n polynomial. Other combining schemes were possible, like addition of random numbers mod p and
giving the random numbers out to families.

EECS 70, Spring 2014, Midterm 2 15



PRINT your name and student ID:

14. (Optional) Multiplication (20 points)

Suppose you have invented a machine for doing mod multiplications extremely fast.

Given a prime p, your invention takes two equal size lists of numbers from {0,1, . . . , p− 1} as inputs and
returns the element-wise product of the input lists, mod p. Your machine is fast and can accomodate any size
lists, but it is also prone to mistakes. More specifically, you know that at most 1

3 of the results are wrong.
For example, suppose p = 29 and we feed the machine the two lists (1,2,6) and (5,1,2) we might get back
output (5,2,11) where 11 6= 6×2 is a mistake. None of your potential clients is interested in a device which
returns false results.

Show that you can augment your machine with Reed-Solomon-like encoding and decoding schemes
such that no wrong outputs are ever returned and correct answers are obtained to the m pairs of
numbers that you actually want to multiply together. (You will need to ask the machine itself to multiply
more than m pairs of numbers to accomplish this.) You can assume you have access to interpolation-based
(1-indexed) RS-encoders (parameters like n and k can be adjusted as you would like) as well as Berlekamp-
Welch decoders. (Again, internal parameters like n and k can be independently adjusted as you would like
— in particular, you don’t have to use the same n and k that you used for the encoders.)

For concreteness, you can assume that the size of the desired input lists is m = 6 and that p = 127. (This is
a prime number)

(HINT: first explore what happens with m = 1 and m = 2 to get an idea for what is going on.)

Solution: We have two messages each of length n. We would like to construct two codewords such that
multiplying the codewords gives a new codeword, which is the encoding of the product of the original
messages. Suppose we have two messages a1,a2, . . . ,an and b1,b2, . . . ,bn, and the corresponding polyno-
mials P1 and P2, which are each of degree at most n− 1. Now we have the product of the two messages,
a1b1,a2b2, . . . ,anbn, and we want there to be a unique polynomial that passes through these points—P1P2
works: for all i = 1,2, . . . ,n, (P1P2)(i) = P1(i)P2(i) = aibi, as desired.

Therefore, if we consider constructing Reed-Solomon codes for the two messages and multiplying them,
and then recovering the polynomial and evaluating it, the message that we will get back will be precisely
the product of the two messages. So, we only need to ensure that we have enough extra points. However,
since P1 and P2 are of degree n− 1, P1P2 is a polynomial of degree at most 2(n− 1). Then, we need
2(n−1)+1 = 2n−1 points to recover the polynomial P1P2. Therefore, if we let m = 2n−1, and we send
2k additional points, we must have m+ k points received without any errors.

If 1
3 of the results are wrong, we need to send enough extra points to make sure the 2

3 that survive will be
enough to recover: 2

3 (m+2k)≥ m+ k, so

⇒ m+2k ≥ 3
2

m+
3
2

k

⇒ 1
2

k ≥ 1
2

m

⇒ k ≥ m.

Therefore, we want to send m+2k = 3m = 3(2n−1) points. To summarize, we encode both messages into
polynomials, evaluate a total of 3(2n−1) points for each, feed these pairs into the machine, and recover the
“message” to find our products.

EECS 70, Spring 2014, Midterm 2 16



Note: Students can get full credits if answering 3(2n−1) total points, but the minimum number of points to
be evaluated is max(6n−7,1). This can be obtained by the following observation:

• m = 1: we add 0 additional point, and there is at most b1
3c= 0 error, so the total number of points is 1.

• m = 2: we add 0 additional point, and there is at most b2
3c= 0 error, so the total number of points is 2.

• m = 3: we add 2 additional points, and there is at most b5
3c = 1 error. We can correct it because we

have 2 additional points, so the total number of points is 5.

• m = 4: we add 4 additional points, and there are at most b8
3c= 2 errors. We can correct them because

we have 4 additional points, so the total number of points is 8.

• m = 5: we add 6 additional points, and there are at most b11
3 c= 3 errors. We can correct them because

we have 6 additional points, so the total number of points is 11.

• m > 5: we add 2m−4 additional points, and there are at most b3m−4
3 c= m−2 errors. We can correct

them because we have 2m− 4 additional points, so the total number of points is 3m− 4. If we only
add 2m− 5 additional points, then there are at most b3m−5

3 c = m− 2 errors. We cannot correct them
because we have only 2m−5 additional points (we need 2(m-2) points).

From the observation, we can get: given m, we need max(3m− 4,1) total points. Plugging in m = 2n− 1,
we get max(6n−7,1) total points.

EECS 70, Spring 2014, Midterm 2 17


