Physics 7b Spring 2001 Midterm 2 R. Packard

Name:	SID	
Discussion section number	Discussion GSI_	
Work all the problems. They are we the question ask the proctor for clari work until you have a "boxed" alge you final answer.	fication. Do not pe	erform any numerical
e=1.6x10 ⁻¹⁹ C, m_e =9.1x10 ⁻³¹ kg, ϵ_o =8.85x10 ⁻¹² $\int \frac{dr}{\sqrt{x^2 + r^2}} = \ln(r + \sqrt{r^2})$	$N_A=6.02 \times 10^{23}$,	$k_B=1.38 \times 10^{-23} \text{JK}^{-1}$
1		
2		
3		
4		
5		
Total		

1. A uniformly charged solid sphere of radius R carrying volume charge density ρ is centered at the origin. Find the force on a uniform line charge having a total charge Q. The line is oriented radially with respect to the sphere with its ends at R and R+d.

2. A disk of radius R carries a surface charge density $\sigma = \sigma_o \frac{R}{r}$. Find the work required to bring a charge Q from infinity to a point on the axis of the disk a distance x away. (Hint: the potential on the axis of a charged ring of radius r is $\frac{1}{4\pi\varepsilon_0} \frac{q}{\sqrt{x^2 + r^2}}$)

3. Charge is placed on two conducting spheres that are very far apart but connected by a thin wire. The radius of the smaller sphere is r_1 =5cm and the radius of the larger sphere is r_2 =12cm. The electric field at the surface of the larger sphere is $2x10^5$ V/m. Find the surface charge density on each sphere.

4. A parallel plate capacitor of area A and separation d is charged to potential V_o and is then disconnected from the charging source. A slab of material of dielectric constant κ =2, thickness d and area $\frac{1}{2}A$ is inserted between the plates. Find the new potential difference across the plates.

5. A battery of voltage V has an internal resistance $R_{\rm in}$. The battery is connected to a heater coil of resistance $R_{\rm L}$. Find the value of $R_{\rm L}$ that permits maximum power to be delivered to the heater.

